1. Introduction

Nano-pigments are organic or inorganic substances, insoluble, chemically and physically inert into the substrate or binders, with a particle size less than 100 nm [1]. Although particle sizes in the 100–200 nm range are required in the current manufacturing practice, nano-pigments have recently gained a wider range of industrial applications [2]. For example, mica-based pigments (particle size ~20 nm) with pearlescent effect are used in cosmetics, automobile coatings, plastics, etc. [3]. In cosmetic applications, both doped TiO$_2$ and ZnO are being developed for use in sunscreens, in order to avoid the skin damage by sunlight radiation [4]. Novel nano-sized reflecting powders, providing a broadband protection against UV radiation, are more acceptable from the cosmetic viewpoint because they are flesh-toned and turn invisible when applied [5]. Another application is nano-pigment to improve contrast, colour gamut and body colour without additional process or cost [6]. Using smaller pigment particles in the liquid crystal display technology can improve not only the stability of pigment in the dispersion medium, but also colour strength, contrast, and transmittance [7]. Also traditional inorganic pigments, including Titanium Dioxide, Zinc Oxide, Silicon Oxide and Magnesium Oxide, are being available in a nano-size range for use in rubber and plastics, e.g. PE, EVA and PVC [8].

The use of nanoparticles can improve the pigment performance: in organic coatings, for instance, nano-pigments enhance both tribological and mechanical properties – such as scratch and abrasion resistance, hardness, strain-to-failure – while maintaining toughness [9]. Another effect of nanoparticles, being smaller than the wavelengths of visible spectrum, is that no scattering and no reflection occur in the visible-light range, so the nanocomposite is transparent. This provides the possibility of formulating transparent coatings with good weathering resistance, since fillers can still absorb UV light [9]. Anyway, the greatest problem of using nano-pigments is the fact that the finer the powder the higher the surface area, implying poor mixing and aggravation of agglomeration phenomena [1].

The ceramic pigments with particle size in the nanoscale have a massive potential market, because of their high surface area, which assures higher surface coverage, higher number of reflectance points and hence improved scattering. In paint formulations, for example, the small particle size allows uniform dispersion by homogenous mixing with binders, which enhances the mechanical strength of the paint after drying. When properly dispersed, the nano-sized pigments exhibit superior effectiveness also in critical abrasive and polishing applications [10].

The literature about ceramic decoration using nanoparticles concerns in most cases pigments promoting a pearlescent or luster aesthetic effect into the glaze. Recent studies of Renaissance and Modern lusters show that these pigments are formed by copper and silver nanocrystals or formed by a thin layer of titanium oxide on a transparent substrate, such as muscovite in the case of pearlescent surfaces [3,11,12]. In the luster, separate silver and
copper pseudo-spherical nanocrystals appear to be dispersed into the glaze, whose optical properties depend on specific nano-structures of Ag and Cu depositions as well as Cu/Ag ratio, nature of the glaze and, when applied over pre-existing pigments, on the interaction with the underlying material [13].

A novel field of application is ceramic decoration by ink-jet printing, where nano-pigments are able to overcome problems caused by micronized pigments (e.g. nozzle clogging, dispersion instability) [14]. Such problems can be solved by the use of ceramic nano-sized inks (nanometric particles dispersed in an organic vehicle) which are able to improve the image quality ensuring high reliability to the printing systems [14]. At any rate, the colouring performance of ceramic pigments depends on both optical properties, which are expected to improve in nanoparticles, and chemical stability, since the dissolution rate in glazes is expected to increase with surface area of pigment. The best compromise in conventional ceramic pigments is usually found with particle size distribution in the 1–10 μm range [15]. However, ceramic nano-pigments (10–80 nm) behaved satisfactorily in preliminary printing tests on ceramic tiles, developing intense colours in a wide range of firing temperatures [14].

The aim of this work is to assess both colouring performance and potential of nano-pigments in ceramic tile decoration, especially porcelain stoneware tiles. The rationale consists of nanopigment application in several ceramic matrices, determination of resulting optical properties and pigment phase composition after firing, including a comparison of colour performance with conventional micro-pigments.

2. Experimental

Four types of nano-pigment suspensions for ink-jet printing in quadrichromy (CMYK: cyan, magenta, yellow and black) were taken into account. These suspensions (nano-sized inks) were prepared by CERICOL as ceramic oxides or metals synthesized in an organic medium by means of a modified polyol procedure [16]. These pigments were characterized by determining (Table 1) particle size distribution by SEM-FEG and STEM (Transmission Electron Microscopy Supra40, Zeiss, Oberkochen, Germany) and by DLS (Dynamic Light Scattering, ZetaSizer-NanoSeries, Malvern Instruments, Malvern, UK); phase composition by high temperature X-ray powder diffraction (X’Pert Pro, Panalytical, Almelo, The Netherlands) using graphite-monochromated Cu Kα1,2 radiation, scan rate 0.02°/3 s per step) in order to determine phase evolution and pigment particle size. The latter was calculated by Scherrer’s equation [19] using FWHM (Full Width at Half Maximum) of the main peaks; instrumental broadening was corrected by measuring the LaBr₃ reference material (NIST SRM660a).

The optical absorption spectra of fired samples were recorded in the UV–visible–NIR range (300–1100 nm) by diffuse reflectance spectroscopy (DRS, λ35, Perkin Elmer, Wellesley, USA) using a BaSO₄ integrating sphere and a BaSO₄ pellet as white reference. Reflectance (Rw) was converted to absorbance (K/S) by the Kubelka–Munk equation: K/S = 2(1–Rw)–(2Rw)⁻¹ [20]. CIE Lab parameters were determined from measurements made on a portable spectrophotometer (MSXP40000 Hunterlab Miniscan, white glazed tile reference x = 31.5, y = 33.3) employing illuminant D65 and 10° standard observer.

In order to compare the colouring performance of nanopigments with that of conventional ceramic pigments in tile decoration, four commercial pigments, available as micron-sized powder with cyan, magenta, yellow and black colours, were mixed together with the glassy coating F1 and the glaze S1, paying attention to put exactly the same pigment concentration than that applied as nano-sized inks. Also these samples underwent fast firing and characterization by XRD, UV–visible–NIR and colorimetric analyses.

3. Results and discussion

3.1. Magenta nano-pigment

Red shades are obtained by exploiting the peculiar optical features of metallic gold nanoparticles. In fact, noble metal nanoparticles like gold, silver and copper are strong absorbers and scatterers of visible light, showing very intense colours. Their unique optical property is due to the collective oscillation of conduction electrons, known as surface plasmon, whose resonance causes a strong light absorption in the visible spectrum [21,22]. Energy and shape of the plasmonic band vary depending on size and morphology of gold nanoparticles, which can be estimated on the basis of resonance energy and bandwidth [21–23].

The diffuse reflectance spectra of ceramics coloured with the nanogold pigment exhibit a gaussian-like plasmonic band, characteristic of spherical particles [21,22], quite constant in energy (~19,000 cm⁻¹ or ~2.3 eV) even in different matrices and firing temperatures (Fig. 1a); it is very similar to that of gold nanoclusters in borosilicate glass [23]. In detail, changes in the band energy and shape can be observed: energy shifts to lower values in glazes, while an increased bandwidth occurs in glassy coating at higher temperatures associated with an increased resonance energy (Fig. 1b).

Resonance energy values are consistent with particle sizes below 20 nm, according to the models in the literature [21,22]. However, wider bands would indicate a particle growth with firing temperatures above 1100 °C [21,24].

The gold particle size ranges from 40 to 90 nm, as calculated by the Scherrer’s equation, in most matrices, although it can reach values around 200 nm in some glazes or glassy coatings (Fig. 2a), particularly F4, that is a borosilicate glass, whose abundant B₂O₃ content (~20%) promotes a fast gold particles’ growth even at a relatively low firing temperature. Overall, by analysing the trend of F1 with firing temperature (Fig. 2b), it can be observed a moderate size growth up to 1100 °C (20 nm ~ 50 nm) and a considerable coarsening at 1200 °C (up to 165 nm).

Table 1: Characteristics of ceramic nano-pigments and conventional ceramic micro-pigments used as reference

<table>
<thead>
<tr>
<th>Pigment</th>
<th>Stoichiometry</th>
<th>Concentration (wt.%)</th>
<th>Particle size (90% within the range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nano-pigments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyan</td>
<td>Co₃Al₂O₄</td>
<td>2.6</td>
<td>10–20 nm</td>
</tr>
<tr>
<td>Magenta</td>
<td>Au</td>
<td>1.0</td>
<td>20–40 nm</td>
</tr>
<tr>
<td>Yellow</td>
<td>Ti₃(Cr,Sb)O₅</td>
<td>6.0</td>
<td>10–20 nm</td>
</tr>
<tr>
<td>Black</td>
<td>CoFe₂O₄</td>
<td>18.7</td>
<td>20–30 nm</td>
</tr>
<tr>
<td>Micro-pigments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyan</td>
<td>Co₃Al₂O₄</td>
<td>99</td>
<td>1–15 μm</td>
</tr>
<tr>
<td>Magenta</td>
<td>Y(Al,Cr)O₃</td>
<td>60</td>
<td>1–20 μm</td>
</tr>
<tr>
<td></td>
<td>Cr(5Se):2ZrSiO₄</td>
<td>5</td>
<td>5–20 μm</td>
</tr>
<tr>
<td>Yellow</td>
<td>Ti₃(Cr,Sb)O₅</td>
<td>70</td>
<td>5–30 μm</td>
</tr>
<tr>
<td>Black</td>
<td>(Co,Fe)(Fe,Cr,Mn)O₄</td>
<td>85</td>
<td>5–30 μm</td>
</tr>
</tbody>
</table>
The colorimetric parameters show a deep magenta colour with a red component (a^*) ranging from 15 to 33 associated to a poor yellow component (b^*) going from 2 to 14 (Table 2). These colour changes mostly depend on the different opacity of ceramic matrices. The magenta colour is very stable in a wide range of temperatures (800–1100°C), although it turns to be more orange at the highest temperature, when an increase of the b^* parameter occurs. This is to a large extent due to broadening of the resonance band, likely connected with the gold particles’ growth.

The gold nano-pigment is stable in all the ceramic matrices, ensuring an intense magenta colour. Chromatic parameters, and especially the slight colour shift towards the yellow, are mainly affected by the growth of gold particle size, which implies a change in the shape of the plasmonic band as predictable by the literature [21–25].

Since the magenta nanogold has no equivalent among commercial micro-pigments, two different red colorants were taken into account: cadmium sulfoselenide included into zircon [26] and chromium-doped yttrium aluminium perovskite (YAP) [17,27]. The optical spectra of coloured ceramic wares (Fig. 1c) show the sharp absorption band of Cd(S,Se), cutting all wavelengths from yellow to violet, and the broad bands of nanogold and YAP. The peculiar semiconductor structure of Cd(S,Se) makes its colour performance outstanding as witnessed by very high a^* and b^* values. The behaviour of gold nano-pigment is close to that of YAP.
with a distinctly lower yellow component, making its red coloration purer.

3.2 Cyan nano-pigment

Nano-sized CoAl₂O₄ is expected to have a spinel-type structure, with Co²⁺ situated at the tetrahedral site [28]. The corresponding microcrystalline pigment is widely used in the ceramic industry as blue colouring agent in glazes and also in the bulk coloration of ceramic matrices, due to its capacity to develop an intense coloration with a considerably increased thermal resistance of Cr-doped nano-CoAl₂O₄ nor other cobalt phases are detected in glazes. There is evidence that Co²⁺ is dissolved in the glasses in 4-fold coordination, which is typical in both silicate and borosilicate glasses [33] giving rise to the strong absorbance in the 14,000–17,000 cm⁻¹ range. Although the occurrence of a small amount of Co²⁺ in octahedral coordination cannot be ruled out, changes in colour after firing at low temperatures are likely linked to a varying ratio between tetrahedrally- and octahedrally-coordinated Co²⁺ and/or to a structural rearrangement of the Co²⁺ in the glass up to 1200 °C.

The optical spectra of glassy coatings coloured with nano- and micro-CoAl₂O₄ are to a large extent superimposed (Fig. 3d), implying that the micrometric pigment also tends to be dissolved in ceramic matrices, since no peaks of cobalt aluminate spinel are detectable in the XRD patterns of glazes.

3.3 Yellow nano-pigment

The yellow nano-pigment is a Cr- and Sb-doped titania. Foreign-element-doping of titania is one of the well-known methods to extend the absorption edge to the visible-light region by forming a donor or an acceptor level in the forbidden band [34]. Dopants such as Cr, Cd and Co ions extend the spectral response of TiO₂ into the visible by inducing optical transitions from d electrons of the metal to the conduction band. In particular, chromium ions, substituting for Ti⁺⁺ in the TiO₂ lattice, have so far yielded optimal results [35], implying that the micrometric pigment also tends to be dissolved in ceramic matrices, since no peaks of cobalt aluminate spinel are detectable in the XRD patterns of glazes.

Table 2

<table>
<thead>
<tr>
<th>Nano-pigment</th>
<th>Matrix</th>
<th>Firing temperature (°C)</th>
<th>L’</th>
<th>a’</th>
<th>b’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magenta, Au⁰</td>
<td>F1</td>
<td>800</td>
<td>46.2</td>
<td>26.0</td>
<td>3.5</td>
</tr>
<tr>
<td>Cyan, Co₃Al₂O₄</td>
<td>F1</td>
<td>800</td>
<td>50.7</td>
<td>2.6</td>
<td>14.2</td>
</tr>
<tr>
<td>Yellow, (Ti,Cr,Sb)O₂</td>
<td>F1</td>
<td>800</td>
<td>77.8</td>
<td>5.7</td>
<td>39.6</td>
</tr>
<tr>
<td>Black, CoFe₂O₄</td>
<td>F1</td>
<td>800</td>
<td>34.9</td>
<td>2.0</td>
<td>1.5</td>
</tr>
</tbody>
</table>

The colorimetric parameters (Table 2) show excellent blue shades in glazes (22 < b’ < −24) and a fair performance in glassy coatings, fired over 1000 °C (−12 < b’ < −19). Nevertheless, a limited colour development can be observed in low temperature glassy coatings up to 1000 °C, likely because of incomplete incorporation of cobalt in the glassy matrix (b’ = 6–10).

In reality, the cyan nano-pigment acts as a dye, as neither crystalline CoAl₂O₄ nor other cobalt phases are detected in glasses. There is evidence that Co²⁺ is dissolved in the glasses in 4-fold coordination, which is typical in both silicate and borosilicate glasses [33] giving rise to the strong absorbance in the 14,000–17,000 cm⁻¹ range. Although the occurrence of a small amount of Co²⁺ in octahedral coordination cannot be ruled out, changes in colour after firing at low temperatures are likely linked to a varying ratio between tetrahedrally- and octahedrally-coordinated Co²⁺ and/or to a structural rearrangement of the Co²⁺ in the glass up to 1200 °C.

The optical spectra of glassy coatings coloured with nano- and micro-CoAl₂O₄ are to a large extent superimposed (Fig. 3d), implying that the micrometric pigment also tends to be dissolved in ceramic matrices, since no peaks of cobalt aluminate spinel are detectable in the XRD patterns of glazes.
overlapping with opacifying phases (i.e. anorthite, zircon). The crystallite size of rutile increases regularly from 10 to 50 nm in the 800–1100 °C range (Fig. 4) thus at a growth rate similar to that observed in nanorutile alone [40]. The UV–visible spectra show an optical band at $\tilde{\omega}$25,000 cm$^{-1}$ for the glassy coating F4, fired at 800 °C, which shifts to $\tilde{\omega}$22,000 cm$^{-1}$ in the case of glasses F1, F2 and F3 fired in the 900–1000 °C range (Fig. 5a). A drastic change is observed in the glazes S1, S2 and S3, since there is no longer a single band, but distinct, weak peaks attributable to Cr$^{3+}$ dissolved in the glassy matrix [32]. The same evolution occurs in F1 fired at different temperatures (Fig. 5b): the optical band at the violet–UV border is connected with the occurrence of anatase at 800 °C; its shift to $\tilde{\omega}$22,000 cm$^{-1}$ (900–1000 °C) is due to both the anatase-to-rutile transformation and particle growth, while the band disappearance at 1200 °C likely stands for TiO$_2$ dissolution in the ceramic matrix.

Observing the colorimetric parameters (Table 2), it can be found that the deeper yellow colour component (b^*~40) is achieved with the Cr-doped anatase crystal structure (800 °C) where the occurrence of Cr$^{3+}$ is able to just shift slightly the band energy. The anatase-to-rutile transition brings about an increased red component (a^*~13) which is due to the changing band slope, provoking the absorption of the blue light also, thus resulting in an orange shade promoted by crystallite size growth (Table 2). The colour deterioration at the highest temperature (b^*~20, a^*~10) is consequent to decomposition of the crystalline TiO$_2$ phases. The occurrence of Cr$^{3+}$ ions in the glass is able to explain this drastic colour change. At any rate, the pinkish colour of the glaze S3 could be related to a partial oxidation of Cr$^{3+}$ to Cr$^{4+}$ [41] which is rather frequent in ceramic pigments [42].

Ceramic wares coloured with titanium-based yellow pigments exhibit analogous optical spectra (Fig. 5c) with the main difference being the enhanced absorbance when micro-pigment is used. However, this different absorbance has important repercussions on coloration: the nano-pigment is characterized by a pure yellow shade, because its yellow component (b^*) is higher and its red component (a^*) is lower than those of the micro-pigment.
3.4. Black nano-pigment

The black nano-pigment was designed as a cobalt ferrite with spinel structure. The CoFe$_2$O$_4$ stoichiometry is expected to arrange in a partially inverse structure, with the Co$^{2+}$ ion at both tetrahedral and octahedral sites [43,44]. Extensive Co–O and Fe–O charge transfers, together with d–d electron transitions of Co$^{2+}$ and Fe$^{3+}$ in multiple coordination, ensure the full absorption of the visible spectrum [20,31].

The CoFe$_2$O$_4$ structure is stable with temperature, besides crystallite size grows from 20 nm (800 °C) to ~250 nm (1200 °C). Such particle size growth is very fast in glassy coatings, but it seems to be prevented in glazes, where crystallite size persists in the 20–40 nm range (Fig. 6). The black colour, expressed as the lower colorimetric parameter L^*, turns darker with temperature (Table 2), besides this trend is not regular, so an effect of particle size cannot be ruled out. The colour performance depends on the crystallization degree of coating: the larger the amount of crystals formed in the glass, the brighter the colour (i.e. higher L^* values). Considering only the glassy coating F1, it can be observed that the colour becomes more intense when firing temperature increases (Table 2). The other glassy coatings behave in the same way, but F4.

The comparison of black micro- and nano-pigments is difficult because the nano-sized ink, once applied in rather high amount, did not penetrate uniformly the unfired glaze layer, so the pigment distribution in the fired sample is not homogeneous and the uncoloured substrate appears through thin cracks. This can justify the clear difference of brightness between glazes coloured with micro- or nano-pigments. In any case, the chroma values (i.e. $c^* = |a^*| + |b^*|$) are comparable in the glazes, even though some colour loss may occur in glassy coatings.

4. Conclusions

Ceramic nano-pigments, designed for quadrichromy (cyan, magenta, yellow and black) ink-jet printing of ceramic tiles, have been applied in several glazes and glassy coatings, comparing their colour performance with that of corresponding conventional micro-pigments.

Each nano-pigment is characterized by its own colour mechanism: surface plasmonic resonance for nanogold; Co$^{2+}$ dissolution in the glassy phase for CoAl$_2$O$_4$; anatase-to-rutile transformation and change of the band structure induced by Cr$^{3+}$ doping in nanotitania; extensive Co–O and Fe–O charge transfer in CoFe$_2$O$_4$.

The colour performance of ceramic pigments is a compromise between the efficiency of coloration, that is thought to be improved by small sizes, and dissolution kinetics in the ceramic matrix, that is expected to be faster when particle size is reduced. From this standpoint, nano-pigments behave satisfactorily, bestowing intense
colours on ceramic wares, besides their very small particle size (mostly <50 nm). However, thermal stability depends on the type of both nano-pigments and ceramic matrices: it is high in the case of black, cyan and magenta colours, which are stable in the whole firing range tested (800–1200°C), although less intense colours are achieved with respect to conventional micro-pigments. Nanotitania is less stable at high temperature, but its yellow coloration is better than that of the corresponding micro-pigment.

Acknowledgements
CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil) is warmly acknowledged for supporting the post-doctorate fellowship (BEX 0151/07-6) of one of the authors (PMTCA).

References