CHAPTER 25
Electromagnetic Chiral Materials

25.1 Introduction
A special class of electromagnetic (EM) materials referred to as chiral materials are

emerging in engineering applications. A chiral medium is one whose electric and magnetic
fields are cross-coupled. The characteristic aspect of such materials is the intrinsic
-handedness (right or left) present in their physical structure.

Optically active, natural materials exhibit mirror-asymmetric molecular structure(s) and
have been originally known as chiral materials. Natural chiral structures include a diverse
array of sugars, amino acids, DNA and certain mollusks as well as winding vegetations while

the man-made versions encompass such objects as a helix, a Mobius strip, or an irregular
tetrahedron. For example, a random suspension of metallic helical springs in a dielectric host
constitutes a typical electromagnetic chiral medium.

As stated earlier, inherently, a chiral medium has left- or right-handedness in its
microstructure with the result that a circularly polarized electromagnetic wave propagating
through it would experience different phase velocities and/or absorption depending on it
being left or right circularly polarized; and a rotation of the plane of polarization will be
caused in a plane wave transmission through such a medium.

The concept of chiralic behavior of materials at suboptical (such as microwave,
millimeter) wavelengths is of interest due to the feasibility of synthesizing such media as new
types of electromagnetic composite materials. Considering a simple, isotropic, two-phase
achiralic medium, the constitutive relations refer to D = £eﬂ'E and B = ueﬁH where D and B
are the electric and magnetic flux densities, respectively, and E and H depict the
corresponding electric and magnetic field intensities. The macroscopic EM properties of
materials, in general, are quantified by the effective permittivity ( & and the effective
permeability (1) parameters. However, in the case of a chiralic mixture, the electric and
magnetic fields are cross-coupled with the result the effective medium is modeled through
the cross-coupled constitutive relation(s) written in the matrix form as:

(§)=(;*Z (i) (25.1)

where o is a complex number depicting the dimensionless cross-coupling coefficient and o*
is its conjugate. Explicitly o = (y — jx) where y is called the Tellegen parameter [1]
measuring the nonreciprocal property of the medium. When ¥ = 0 the medium is designated
as a nonreciprocal chiral or Pasteur medium [2]; and the parameter k decides the degree of
chirality. When the chirality vanishes (with k¥ = 0), the medium represents a simple
nonreciprocal achiralic material called the Tellegen medium. There are three well known
versions of the cross-coupled constitutive relation given by Equation (25.1). These arc
known as Post relation(s), Condon-Tellegen relation(s) and Drude-Born-Fedorov relation(s)
[3]. Essentially, they all represent the electromagnetic constitutive relations of a chiralic
medium but manifest in different algorithmic formats.

The chirality (right- or left-handedness) is a geometry-induced property of the medium
which renders the medium to rotate the plane of polarization of a transmitted plane wave with
respect to that of the incident plane wave. Classically, this property is referred to as the
optical rotary dispersion (ORD). The cross-coupling between the field components in a
chiral medium refers to the feasibility of an electric field (E) force inducing not only the
electric displacement (D) or dielectric polarization but also a magnetic flux (B) or the
magnetic polarization. Likewise, the magnetic field (H) impressed on a chiral medium
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would produce both magnetic and dielectric polarizations. The extent of such cross-coupled
magnetoelectric effect is quantified by the chirality parameter x .

Further, the handedness of the medium is represented by the quantity x. When x> 0
the medium is right-handed; and when x < 0 the medium is left handed and the magnitude of
K (0 to £1) decides the amount of angular rotation that an incident plane wave would suffer in
traversing such a medium. Also, the amount of rotation depends on the distance traveled in
the medium; and this implies that the optical activity occurs not only at the surface but
throughout the chiral medium. The constitutive parameters, namely, Eqfy and My are
dependent only on the magnitude of the chirality factor (k); that is, they remain the same for
both right- or left-handedness of the medium.

25.2 State-of-the-Art Models of Chiralic Mixtures/Composite Materials

Although chiral materials have received attention only recently in electromagnetic
applications, the concept of chirality and its role in a variety of fields like mathematics,
chemistry, optics, and life sciences date back to the early 19th century. Electromagnetic
chirality embraces both optical activity and circular dichroism. Optical activity refers to the
rotation of the plane of polarization of optical waves by a medium while circular dichroism
indicates a change in the polarization ellipticity of optical waves by a medium. The
phenomenon of optical activity was first discovered by Arago in 1811 who found that a
crystal of quartz rotates the plane of polarization of linearly polarized light. Pasteur [2] and
Fresnel [4] also studied the phenomenon of optical activity.

Chirality and its effects attracted the attention of the electromagnetic community with
the simple but illuminating microwave experiments of Lindman [5]. Regarding the analysis
of wave interaction with the chiral media the work of Bassiri [6], Jaggard et al. [7],
Silverman [8}, and Lakhatia et al. [11,12] are more recent to note. Concerning the modeling
of the effective parameters (permittivity and permeability) of a chiralic mixture the works of
Sihvola and Lindell [9,10], Lakhatia et al. [11,12] are well known. A few well-researched
applications of such chiral composites have been elaborated in [13-15]. Yet another possible
approach in modeling the effective parameters of different types of chiralic mixtures usable
at suboptical frequencies has been proposed by the author [16] and Subramaniam [17] as
described below.

25.3 EM Chiralic Mixtures with Spherical Inclusions
The logarithmic law of mixtures (see Chapter 4) can be extended to a chiralic medium

constituted by spherical chiralic inclusions dispersed in an achiralic host. Considering a two-
phase, isotropic mixture formed by spherical chiralic inclusions of volume fraction 8 and

achiralic properties (€,, i), embedded in an achiralic host medium of volume fraction equal
to (I — 6) with electromagnetic property specified by (£,, i,), the corresponding cross-
coupled values of the effective permittivity (£, and the effective permeability (1) of the
mixture can be written as:

eogr=(C19C219) (e15 F ¥ (1My5))} (25.2a)
Lo = (C35CLTO) (g F (179 i)  (252b)

where, £;,, = 81982(1'9), Hipg = H JLTACEA Mog = (e,og/u,og)m and 7yis a cross-coupling
coefficient. C;, C,, C3, and C, are the weighting coefficients. These weighting coefficients
are implicit parameters chosen to offer the attributes of logarithmic law of mixing to the
effective permittivity and permeability properties. It may be noted that these coefficients
weighted by the volume fraction exponents, namely, 8 and (I — 6), are in the same analytical
(logarithmic) form as described in Chapter 4. Further, the terms involving yin Equation 25.2
represent the magnetoelectric crosscoupling due to the presence of chiralic inclusions.
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Though, in general, Eofr and Mg can be related (via a set of weighting functions) to the
constituent values (namely, £, i, &, 1, and 7) by any arbitrary function F, of Equation 4.8,
the logarithmic format is currently chosen in conformity with the statistical/probabilistic
attributes of the mixture as conceived by Lichtenecker and Rother [18].

The dimensional consistency in the above expressions is maintained via ¥ and (1/y)
being used as appropriate. Further, (€;, li;) are the chiralic material parameters of the
inclusions decided by their achiralic counterparts (£, 4,) and by the chirality factor {; of the

inclusions. That is,

& = &, (n, {peIt! (253a)
and

np =t -, T (25.3b)

where 7 is the intrinsic impedance due to the achiralic parameters, namely, (1,/€,)!”? and
N, = 0/(1 + (1 {;)?I'2. In the above expressions it may be noted that in the case of the
inclusions being achiralic (that is, §; —0), ; = €, and ; = ..

The weighting coefficients of Equation 25.2, namely, C;, C3, C3, and Cy4, can be
evaluated explicitly with the geometrical mean constraint that the effective characteristic
impedance of the mixture, namely, 7,4 = (. yeﬁleeﬁaw, at the equivolume condition (6 = 0.5)
would tend to the geometrical mean of its limiting values at 6 = 0 and I; that is, at 8 = 0.5,

(Hep/Eep = ((H2/E2)" (y/e))) (254)

The foregoing geometrical mean constraint is the basis and the underlying principle of
the logarithmic law expressed in the most general form by Equation 25.4. That is, in a truly
stochastic mixture Lichtenecker [19] contended that the geometrical mean of the properties at
the extremities of the volume fraction should correspond to the property at the mid-value of
the volume fraction (that is, at 8 = (.5). Hence, using this geometrical mean constraint

specified above, the unknown coupling cofficient ¥ can be determined as 0, +1 or ~1. The
zero value applies when the inclusions are achiralic; and the +1 and -1 values refer to the
right- or left-handedness of the inclusions and hence the mixture, respectively. Also the
prefixed signs (F) or (£) for ¥ in Equation 25.2 account for the invariance of the effective

parameters (eeﬁand Hep) with the handedness of the mixture.
Accordingly, the weighting coefficients C;, C5, C3, and C4 can be explicitly specified in
terms of the material parameters as:

Cr=¢/(g -Iy(sI/pI)w}

Cz = ex/(&) Fy(Ex/U)?) (25.53)
and

C3 = w/lpy (/e

Cq = upllpy £(1/P(1p/ex)) (25.5b)

The effective chirality ({ eff) of the mixture is given by:

Lo = [1+81)8 ~ 11 (1o — (1o P10V (25.6)
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The above expression for the effective chirality of the mixture is derived on the basis of the
characteristic impedance relation:

N = Mo/ 1+(Miog Se? 1”2 (25.7)

where 17],4 is the chiralic, and 7,,, the achiralic effective characteristic impedance of the

mixture.

Inasmuch as the test medium represents a random mixture, the values of Ep and Mo
should also be constrained by their corresponding upper and lower limits specified by the
Wiener limits mentioned in Chapter 4. That s,

1/[6/e) + (1 - O)/ey] <€ < Ogp + (1 - O)/Ey (25.82)
W[y + (1= 6/pp] S Hopr < Oy + (1~ Oy (25.8b)

The weighting coefficients as expressed in Equation 25.5 are the optimal values for a
truly stochastic mixture inasmuch as they are derived on the basis of the geometrical mean
constraint. If they are derived in any other possible way (such as on the basis of arithietic
mean constraint), the resulting values would not apply to a truely stochastic system.

The logarithmic law formulations of Equation 25.2 which refer to spherical chiralic
inclusions can be extended to shaped chiralic inclusions as well via Fricke's formula by
incorporating the explicit dependency of the results on the aspect ratio or eccentricity of the
inclusions.

25.4 Chiralic Composites with Shaped Inclusions

In the previous section, analytical descriptions for the effective parameters of a simple
chiralic mixture randomly dispersed with spherical chiralic inclusions were indicated. The
problem of shaped chiralic inclusions randomly dispersed in an achiralic host could also be
addressed on the basis of mixture theory. The effective values of the dielectric permittivity
and magnetic permeability of such a composite medium are derived by modifying Fricke's
formula on the basis of the logarithmic law of mixing. The resulting expressions are thus ad
hoc extensions of the approaches due to the well-known Fricke's and logarithmic law
formulations.

In general, as discussed in Chapter 4, the particulate inclusions are referred to as shaped
if two or more of the lateral dimensions are significantly different as in the case of ellipsoids,
prolate/oblate spheroids, needles, and disks. For a spheroidal geometry with semi-axes a, b,
and ¢ and taking b = ¢, the aspect ratio is equal to (a/b). When this aspect ratio is of
significant value (either large or small compared to unity) the corresponding eccentricity (e)
would play a significant role in the polarization of the particles when the mixture is submitted
to an external field; and the depolarization arising from the relative disposition of the
particles due to the random nature of the particle dispersion (and/or orientation) in the
mixture would become another effective stochastic parameter to be duly considered. The
works of Wiener, Fricke, Siilars, Lewin, Hamon, and Boned and Peyrelasse are the well-
known endeavors directed towards the elucidation of the dielectric properties of simple
achiralic mixtures with shaped inclusions as discussed in Chapter 4.

Considering a chiralic mixture composed of an achiralic host dispersed randomly with
shaped chiralic inclusions (such as helices) which have an inherent shape factor associated
with them, no well-known formulations are presently available. Hence, in the following
section analytical descriptions for such a mixture are developed and some theoretical results
and experimental data are presented.

25.5 Effective Parameters of Chiralic Mixtures with Shaped Inclusions
For a spheroidal geometry of the inclusions with semi-axes a, b and ¢ and taking b = ¢,
the aspect ratio is equal to (a/b); and in Fricke's formulation as well as in [20], a shape factor
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denoted by x was chosen to represent the dependency of the permittivity on the aspect ratio.
The corresponding factor for the permeability is taken as y currently. Using the method of
[20], the modified shape factor(s) for a chiral mixture constituted by an achiralic host and
shaped chiralic inclusions can be deduced as follows.

In terms of Fricke's formulation [20], the effective permittivity ( £, is given by:

Eopr= (€182 (1 + x8) + &% x(1 - O))/{£/(1 - 6) + £x(x + 6)] (25.9)
Analogously the effective permeability ( Hefy) of the mixture is given by:

o= {111 (1+y0) + a2 Y(1 - 0)}/{11;(1 - 6) + px(y + 6)} (25.10)

Setting these expressions identically equal to the respective relations of Equation 25.10, the
shape factors x and y are obtained as:

x=MN,/D, (25.11a)

where N, = {C19C2("" e (1- 6) + £26](e1,0 FV(UMypg)) - £185)
and D, = {eplep(1 - 8) +£16 - C1%C2(O{ey 0 Fy (1Mo}

y=NN/D, (25.11b)

where N, = {C39C( 1O p;(1- 6) + 16](11p5  ¥(1/Myp0)) ~ iyttn}
and D), = {up[p(1- 6) + 16~ C39CL Oy, £ y(1myoe)H1)

The parameters M and N in Equation (25.11) are factors dependent on the (a/b) ratio of
the spheroidal inclusions. For an oblate spheroid (@ > b) or disk-like (@ >> b} inclusions,
M=2(m-1)ife; 2g,0r (m—-1)2if g <¢, Likewise N =2/m-1)if y; 2 u, or
(m—1)/2if yu; <y, Here m refers to the depolarization factor given by [23]:

m = V{IN1 -2) = [farccos(V(1 - 12)*2]) (25.12)
where f = (b/a) < 1 and the eccentricity e (of the oblate spheroid) is equal to  — (b/a) = (I —

h.

For prolate spheroidal (a < b) or needle-like (a << b) inclusions, M = 2/(m - 1)if ; <
&y 0r(m—1)2if g, 2¢,. Likewise N=2/m—1)if y; <p,; or (m—1)2if gy 2 y,. In this
case m is given by [23]:

m=1/{1/g? - 1)~ [gin(g + (82 - )12 /(g2 - 1)*72]) (25.13)

where g = b/a > 1, and the eccentricity e (of the prolate spheroid) is equal to I — (a/b) =
1-(1/g).

Hence, the effective permittivity (€ and effective permeability (Hep) of the test
mixture can be calculated from Equations 25.9 and 25.10 with the values of x and y of
Equation 25.11. The effective chirality ( §eﬂ) of the mixture can then be evaluated from
Equation 25.6.

Sample computations on the above algorithms were performed with the following data.
A test mixture is presumed to consist of an achiralic background with shaped chiralic
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inclusions of volume fraction 8= 0.4. Two sets of hypothetical ingredients were considered,
namely, (&, =78.3, i, =1000, & = 2, and [, = 55) and (&, = 78.3, i, = 1000, €, = 2, and L,
= 55). In each case, an arbitrary chirality factor of §; = 0.000] was presumed. That is, the
chosen value of {; represents the degree of chirality decided by the distinct shape of the
inclusions (such as helical); and the magnitude of {; (taken here as 0.0001) would alter the
achiralic parameters (€, i,) of the inclusions to the corresponding chiralic values, namely,
(&, 1) via the relations given by Equation 25.11. Thus {; controls the degree of chirality

and can be designed by appropriate geometry of the inclusions. Inasmuch as the inclusions
are chiralic, the resulting mixture would also exhibit chiralic characteristics with an effective

chirality factor given by Equation 25.6.
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Figure 25.1 Effective values of permittivity (€.¢¢ ) and permeability (Mg ) of a chiralic
mixture versus aspect ratio (a/b) of the inclusions of volume fraction 0.
(6 = 0.4; WUL: Wiener's upper limit; WLL: Wiener's lower limit. For A&C: { = +1,
£ =0.0001, g, = 78.3, u, = 1000, &5 = 2, iy = 55; For B&D: { = +1, { = 0.0001,
€, =783, 11, = 1000, €. =2, 1, =355.)

In the foregoing theoretical considerations, the chiralic particulates dispersed in the host
medium can be "stretched” or “compressed” so that each particle would assume an axially
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asymmetric or "shaped" chiralic geometry. In this case the particulate eccentricity (e) or the

aspect ratio (a/b) should also be considered. Hence, for different values of (a/b), the

computed results on the two hypothetical samples considered are presented in Figure 25.1.
The inferences from the results pertinent to Figure 25.1 are:

® The effective dielectric permittivity and magnetic permeability of a random chiralic
mixture are functions of the shape factor of the inclusions as in the case of achiralic
mixtures.

® The material parameters given by Equations 25.9 and 25.10 reduce to that of a mixture
with spherical inclusions as in Equation 25.10 when a/b = 1.

®  Also, the formulations of Equations 25.9 and 25.10 are in a closed form.

®  Use of the logarithmic law of mixing confirms the proportionality postulation applicable
to a statistical mixture.
The expressions for Egpr and ueﬂrsatisfy conditions at the extreme limits of =0 or 1.

The results indicated are bounded by the Wiener limits (see Chapter 4).

®  Last, these formulations based on the logarithmic law of mixing refer only to randomly
dispersed spheroidal inclusions (disordered systems) in an achiralic host and do not
apply when the shaped inclusions are aligned/oriented specific to the electric field
direction. The algorithms, however, can be modified to suit such orderly disposed
inclusions and are detailed in Section 25.8.

From the results presented, it could be evinced that, for a given set of constituent
parameters, £and g vary significantly with respect to the particulate eccentricity and
eventually approach their Wiener bounds at the limiting values of the aspect ratio
corresponding to the particulate shape becoming disk-like or needle-like as depicted in Figure
25.1.

25.6 Practical Considerations: An Experimental Study

To illustrate the practical aspects of using the algorithms of the previous section in
synthesizing a chiral electromagnetic composite for applications at quasioptical frequencies,
the following experimental study as reported in {17] can be considered.

A square slab of 11.85 x 12.5 x 2.72 cm of a test composite was fabricated with a host
medium of paraffin wax (&, = 2.35, u, = 1) embedded with a large number (approximately
120) of miniature right-handed helical springs made of a high permeability metal alloy with
K, = 30,000. The radius of each helix is 0.15 cm and the pitch is 0.25 cm and it contains 3.5
turns. The metallic volume is about 2% of the cylinder of radius 0.15 cm and height 0.9 cm.
Considering the total volume of the slab, this cylindrical volume constitutes a volume
fraction of 0.2. At the test wavelength of about 3 cm, the chiral mixture so fabricated is fairly
homogeneous by virtue of the size of the helices being small in comparision to the operating
wavelengths. However, the chiral inclusions should not be too small lest they become
"invisible" to the propagating wave. Further, the helices were disposed randomly in the wax
medium so as to emulate a truly statistical mixture and ensuring isotropic performance.

The metal concentration of the right-handed helices, namely, 2% refers to the
corresponding cylindrical volume fraction occupied by the helices of the order of 20%.
Hence, notwithstanding the actual volume fraction of the metal appearing low, the apparent
cylindrical volume enclosed by the springs is quite high. Considering the dimensions of the
springs, the ratio of the length of the cylindrical volume enclosed to the radius of the helix
specifies the aspect ratio (&/a) of the inclusions. In the present case, it is equal to about 6.

The influence of the effective electromagnetic properties of the test sample on
microwave transmission was studied at X-band frequencies (8 to 10 GHz). For this purpose,
a microwave transmitter-receiver arrangement was used with the test slab irradiated by a
focused beam of microwaves emerging from a microwave horn.
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For a given frequency setting with the transmitter horn launching a vertically polarized
transmitted (EyI component only) beam, the receiver (also set to receive the vertically
polarized wave) was calibrated and normalized so that the detected output corresponds to O
dB. This refers to a total free-space transmission with a coefficient of 1. As a next step, the
test chiralic slab was introduced between the transmitter and the receiver horns and the
following resulting effects at the receiver were measured:

(1) The power transmission coefficient due to vertically polarized transmitted and
received EyT waves (that is, IEyT/EyIIZ)

(2) The power transmission coefficient due to vertically polarized transmitted wave
and the cross-polarized (orthogonal) received E,T wave (that is, IEZT/EyIIZ)

These measurements were performed at different spot frequencies over 8 to 10 GHz
range. Relevant results are presented in Figures (25.2 and 25.3). To compare the
experimental data with the theoretical calculations, the values of €, and U4 as given by
Equations 25.9 and 25.10 were computed with the following data relevant to the test slab: g,
= 2.35 u, = 1, u, = 30000, 6 = 0.2 and a/b = 1/6. Inasmuch as the inclusion is made of
metal and its corresponding value of &, is not definable, the use of the logarithmic law of
mixing (when the inclusions are metallic) is usually questioned. However, the author [21]
had developed an exclusive method to obviate this difficulty by extending the logarithmic
law to complex dielectric susceptibility which accounts for such metallic inclusions. Hence,
following the method given in [21], for the metallic inclusions of conductivity ¢, the

expression for Elop & and g; of Equation 25.9 can be written as:
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Figure 25.2 Computed and measured data on transmission coefficient versus frequency for a
normally incident E-polarized beam wave on a chiralic composite slab.

£, > (0y/wey)
g1 » Q= [(o1/wep) - (M,L1)151 + 1] (25.14)

and

E1og * 20 {(£7— 1)1 cos(n82)] + 1
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where @ = 27 x frequency and &, = free-space permittivity.
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Figure 25.3 Data on co- and cross-polarized power transmission coefficients versus

frequency measured with a E-polarized beam wave normally incident on a chiralic composite
slab.

It may be noted that the above expressions are frequency dependent. Therefore, the
corresponding results of Equations 25.9 and 25.10 would also be frequency dependent. For
the test sample under discussion the metallic inclusions have 6; = 1.8 x 10% S/m. Hence, to

pursue the calculations with Equations 25.9 and 25.10, the only unknown left is the chirality
factor ¢, of the inclusions.

For a given set of values, namely, (£, L, and 7),4), the corresponding transmission
coefficient (for normal incidence) at the metal-backed test composite is given by:

\T\ = {\T"— Texp[—j4T€ gz p1op 2 /A I\ — T2 exp[~j4T(E gy o™ 2d/ 20 ]}
(25.15)

where j = V-1, d is the thickness of the slab, and Ay is the free-space wavelength.

Considering a test frequency (in the range 8-12 GHz), the computed data on E8
Meps and neﬁof the test sample are presented in Figures 25.4-25.6. These results show that
regardless of the value of {; (in the range 0 < {; < I), the calculated values of £, [t,g and
Negr remain almost unchanged.
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Figure 25.4 Computed data on the relative effective permittivity versus frequency pertinent to
chiralic composite media with 0 < §; < 1.
Data on the test samples: A: €5 =2.35, 4y =1, 0y =1.8 X 106 siemen/meter, p. = 30000.
B: Hypothetical sample 1: €5 =2, py = 55, £, = 78.3, . = 1000.
C: Hypothetical sample 2: €, = 2, p.= 55, €5 = 78.3, Py = 1000.

For the hypothetical samples on the other hand with nonmetallic composition (g, =
78.3, 1, = 1000, &, = 2, and u, = 55) and (&, = 78.3, i, = 1000, €, = 2, and u, = 55) as
considered in the previous section, the corresponding values of Eo; Hegp and Negr (as
presented in Figures 25.4 to 25.6 for a volume fraction 6 = 0.2 and a/b = 1/6 over the
frequency range of 8-12 GHz) show that for different values of &; (in the range of O to 1) the
effective parameters of these hypothetical samples may vary significantly.

As regards the hypothetical samples and the test sample, the major difference in their
electromagnetic constitutive characteristics is that in the test sample the fabricated inclusions
are conductors contributing a susceptance term (0,/twep) of excessive magnitude whereas this
is replaced by the &, term in the hypothetical samples which is relatively of very small value.
Further, unlike in the test sample, £, and 11, are assumed to be frequency independent in the
hypothetical samples.

Hence, it can be surmised that the overwhelming dielectric susceptance contribution
due to the conductor inclusions make the effective parameters of the mixture dependent on
the frequency but insignificantly dependent on the {; values. In contrast, the low dielectric
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susceptance due to the small values of £; (such as those for dielectric inclusions considered in
the hypothetical samples) render the effective parameters dependent on {;, but independent

of the frequency.
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Figure 25.5 Computed data on the relative effective permeability versus frequency pertinent
to chiralic composite media with 0 < {; < 1.

Data on the test samples: A: €9 =2.35, 4y =1,67 =18 % 106 siemen/meter, {1 = 30000.
B: Hypothetical sample 1: €5 =2, gy =55, €5 = 78.3, p, = 1000.
C: Hypothetical sample 2: £, = 2, p, = 55, €5 = 78.3, {15 = 1000.

Now referring to Figure 25.2, the calculated values as per Equation (25.15) of the
transmission coefficient corresponding to the co-polarized components of the incident
(vertically polarized) beam wave, vary with frequency exhibiting resonant windows. This is
confirmed by the measured values.

Further, the presence of the test slab in the transmission path causes a rotation of the
plane of polarization of the incident beam wave. This is evinced from the measured cross-
polarized (orthogonal) field component at the receiver. The ratio of the co-polarized and
cross-polarized field components at the receiver therefore refers to the ellipticity of
polarization caused by the chiralic property of the test sample. Hence, it should implicitly
depict the effective chirality of the test medium, namely, Ceﬁr. From Ceﬁ using Equation
25.14 the corresponding values of {; can be determined. Relevant results are also presented

in Table 25.1. It may be noted that both {,-as well as {; are almost invariant with frequency
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suggesting that they are more dependent on the geometry of the included chirals rather than
on the external electromagnetic field forces.
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Figure 25.6 Computed data on the relative effective characteristic impedance versus
frequency pertinent to chiralic composite media with 0 < {; < 1 (1, = 120% ohms).

Data on the test samples: A: €5 =2.35, i1 = 1, 6} = 1.8 x 10 siemen/meter, |1, = 30000.
B: Hypothetical sample 1: €5 =2, By =55, €5 = 78.3, p, = 1000.
C: Hypothetical sample 2: €, = 2, i, = 55, €5 = 78.3, i, = 1000.

25.7 Discussions on the Theoretical Considerations
On the basis of the theoretical aspects presented and the experimental results furnished
in the previous sections the following can be inferred:

1. Although the formulations indicated are extrapolations of the logarithmic law of mixing
as applied to dielectric permittivity, its applicability to practical systems is evident from
the theoretical and experimental results furnished. Close correlation between the
theoretically evaluated transmission coefficients (in terms of £,z and L,z and the
experimentally determined values at different frequencies (Figure 25.2) validates the
algorithms of Equations 25.9 and 25.10.

2. A chiralic mixture constituted by a random dispersion of conducting chirals in an
achiralic host offers electromagnetic absorption characteristics as is evident from the
measured transmission coefficient results depicted in Figure (25.2).
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3.

Such electromagnetic absorption is frequency dependent as could be seen in Figure

(25.2). This frequency dependency arises from:

(a) The loss tangent of the host dielectric. (This, however, being very small for
paraffin wax, could be neglected).

(b) The dissipative loss is due to conducting inclusions as dictated by Equation 25.14.
This is rather a more predominant factor than the loss-tangent effects of the host
medium.

Both theoretical calculations and experimental data (Figures 25.2 and 25.3) indicate that
the absorption characteristics may exhibit resonances. Although this corresponds to
limited bandwidth of operation, these resonances can be quenched with high
concentration of inclusions as indicated in {22].

Further, the dispositions of inclusions may also affect the bandwidth performance.
Especially, the inclusion-to-inclusion contiguity will decide the relaxation and hence the
effective absorption process.

Such contacts between the inclusions would also affect the chirality of the composite due
to induced surface currents on the helices [22].

The indicated study has addressed implicit definitions for the effective chirality ( {eﬁr) of
the mixture and for the chirality of the inclusions ({;) in terms of experimental
parameters as depicted in Table 25.1. In the relevant work as well as in the other
existing studies [9,10], there is no method of knowing the value of the intrinsic chirality
parameter ({;) of the inclusions on a priori basis, except that it is controlled by the size
and geometry of the inclusions. However, as proposed above a strategy to measure the
effective chirality of the mixture-medium (namely, {eﬁc) is feasible, and thereby the value

of {; on a posteriori basis can be deduced (Table 25.1).

Table 25.1 Estimation of the Intrinsic Chirality of the Inclusions

Frequency Measured Cross-polarization Proposed measure of effective g

in GHz power Cp in dB relative to chirality as determined

free-space transmission Eefp = {antilog[-C,/10]}' 12 from e, via
Equation (25.6)

8.5 10 0.3162 0.9860
9.0 10 0.3162 0.9930
9.5 12 0.2512 0.7500
10.0 11 0.2818 0.8700

10.2 10 0.3162 0.9990

8.

The results further indicate that gffand Lgfr are frequency dependent (Figures 25.4 and
25.5) mainly due to the complex permittivity of the inclusions. The effective chirality of
the overall mixture as given by Equation 25.14 is, however, only slightly frequency
dependent as decided by the transmission coefficient(s) involving the electrical thickness
(d/Ay) of the test sample. This is confirmed by a minor variation in the measured

chirality-dependent cross-polarized component versus frequency in Figure 25.3.
To conclude, the approach pursued in [17] refers to the extension of the well-known

logarithmic law of mixing on an ad hoc basis to determine the effective electromagnetic
constitutive parameters of chiralic mixtures.
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The theoretical results so obtained are supplemented by some experimental results to
portray the design feasibilities of realizing chiral composites at microwave frequencies. A
variety of applications of such composites have been considered in practice [13-15]. To
name a few, EMI shields, radar absorbing materials, polarizing lenses, etc. can be designed to
match certain specific characteristics with the type of chiralic mixtures discussed.

The formulations indicated in this chapter are useful in synthesizing chiralic composites
with chiralic inclusions of size comparable to the wavelengths of operation. If the size of the
inclusions is too small (in comparison to the wavelength), it will render the medium achiralic.
Then the present formulations will refer to an achiralic mixture medium with ¢ =0.

Last, the following should be noted concerning the theoretical considerations of this
chapter which are based on combining Fricke's formula and the logarithmic law of mixing as
applied to a chiralic composite. Unlike Maxwell-Garnett's formulation, Fricke's formula (see
Chapters 4-7) is devoid of dilute-inclusion approximation; and the shape factor is controlled
in the analysis presented here by the logarithmic law, permitting the mixture to be viewed as
a stochastic entity with macroscopic random attributes to its constitutive parameters. Thus,
although not derived on the basis of the first principles, the algorithms of this chapter are in
line with the electrostatic aspects of Fricke's formula and the probabilistic characteristics of a

statistical mixture.

25.8 Orderly-Textured Chiralic Mixture Media

In Chapter 4 (Section 4.5), the case of an orderly-textured simple (achiralic) dielectric
mixture was discussed and relevant formulations were presented. Now, relevant to the
discussion on chiralic mixtures a new class of chiralic mixtures called orderly-textured
chiralic mixtures are considered. Such mixtures can be constructed by an ordered
arrangement of shaped, chiralic inclusions in an achiralic host. The effective electromagnetic
properties of such a mixture would be considerably different from those of both simple
orderly-textured media as well as random chiralic media discussed earlier.

In order to describe the effective electromagnetic properties (permittivity and
permeability) of an orderly-textured chiralic mixture, the formulations indicated in Chapter 4
can be utilized and a strategy similar to that of the foregoing sections can be adopted. In the
previous sections the logarithmic law was extended in a modified form to describe the
effective properties of a chiralic mixture comprised of an achiralic host and randomly
dispersed with shaped chiralic inclusions. Accordingly, the formulations for the effective
permittivity and the effective permeability of such a mixture are as given by Equations (25.9)
and 25.10.

Now utilizing the above formulations and following a weighting strategy similar to that
adopted for the orderly-textured simple (achiralic) mixture, analytical formulations for the
effective properties of an orderly-textured chiralic mixture can be developed. That is,
corresponding to the Equations of 4.23 and 4.24, the formulations for the effective
permittivity (seﬁr') and the effective permeability ( ,uejf') for an orderly-textured chiralic

mixture can be written as follows:

Eoff = Eofr (EL/EfP (25.16a)

Heff = Meofr (H1/Hef) (25.16b)
and

Eoff = Eafr(Er/Ec)” (25.17a)

Heff = gy (HU/Me" (25.170)
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All the notations and other conditions or statements as regards to the orientation
specified with respect to the electric field direction remain the same as those for a simple
orderly-textured dielectric mixture discussed in Chapter 4.

The above formulations (Equations 25.16 and 25.17) are concerned only with the
interaction of an orderly-textured chiralic mixture with the direction of an external applied
electric field. However, it should be noted that inasmuch as an externally applied magnetic
field can also evoke a response in a chiralic medium, the corresponding formulations for €4

and H’eﬁ' would be different from Equations 25.16 and 25.17.

It should be observed that even though the effective permittivity (Eqp) alone was
discussed for the case of orderly-textured achiralic mixtures presented in Chapter 4,
formulations for both £, and /1, are to be considered in the case of such chiralic mixtures.
This is due to the fact that in a chiralic mixture (unlike an achiralic mixture) the electric and

magnetic fields are cross-coupled.

In summary, proceeding from the simple logarithmic law of mixing weighted on the
basis of Langevin's function, the effective permittivity of a simple, orderly-textured dielectric
mixture can be elucidated. Hence, the effective permittivity and permeability of an orderly-
textured, chiralic mixture can also evaluated with the aid of the results presented in the

previous sections.

25.9 Sample Results on Orderly-Textured Chiralic Mixtures

40
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Figure 25.7 Effective permittivity (€.¢) of an orderly-textured chiralic mixture versus the
(a/b) ratio of the inclusions of volume fraction, 8 =0.4.
(Data: €, = 78.3; Y, = 1000; €5 = 2; Py = 55; y=+1; { =0.0001.)
AA': Sihvola and Lindell's [10] formulations for perpendicular orientation (A) or parallel (A")
to the applied electric field (E); BB': Corresponding results with the formulations of
Equations 25.16 and 25.17; C: Wiener's upper limit; D: Wiener's lower limit.

The results corresponding to an orderly-textured chiralic mixture as per Equations 25.16
and 25.17 are compared with those due to Sihvola and Lindell [10] in Figure 25.7.

® It is observed from Figure 25.8 that for prolate spheroidal inclusions the value of €,/
tends towards Wiener's upper limit and 1,4’ to Wiener's lower limit in the limiting case
of all inclusions being aligned parallel to the applied electric field. Likewise, when all
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the inclusions are antiparallel to the applied electric field, the value of £eﬁ’ tends towards
Wiener's lower limit while /1,4 tends towards the upper limit.
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Figure 25.8 Effective permeability (i ¢) of an orderly-textured chiralic mixture versus the

(a/b) ratio of the inclusions of volume fraction, 6 = 0.4.
(Data: £, = 78.3; p, = 1000; &5 = 2; Wy = 55; Y= +1; { = 0.0001.)
AA" Sihvola and Lindell's [10] formulations for perpendicular orientation (A) or parallel (A")
to the applied electric field (E); BB": Corresponding results with the formulations of
Equations 25.16 and 25.17; C: Wiener's upper limit; D: Wiener's lower limit.

®  Again as before, the above are reversed for oblate spheroidal inclusions.
® Unlike Taylor's formulations discussed in Chapter 4 of g,gat e = 0, Sihvola and

Lindell's formulation underestimates the values of both Eoff and 5 at e = 0 when

compared to the logarithmic law. This is could again be reasoned as due to the dilute
phase approximation of Maxwell-Garnett theory on the basis of which Sihvola and
Lindell's formulations were derived.

e Use of Langevin's theory enables the construction of the ordered texture from the
disordered dispersion regardless of particulate concentration and it also implicitly
accounts for the interparticulate interaction within the macroscopic test mixture.

25.10 Applications of Electromagnetic Chiralic Materials

Chirosorb™ : A novel material which is invisible to incident to EM waves (by virtue of its
zero reflectance characteristics) has been synthesized [14] by embedding randomly oriented
identical microstructures (such as microhelices) in an isotropic host medium. This material
could be used for RCS reduction purposes.

Chirowaveguide materials: When a waveguide is filled with an appropriate electromagnetic
chiralic material, the propagating TE and TM modes become coupled with a coefficient
proportional to the chiralic admittance parameter. Possible use of this principle in polymer
waveguides and integrated optical devices is indicted in [13].

Chiralic substrate materials: For microstrip antennas use of a chiralic material as a
substrate has been suggested. Since chiral materials are polarization sensitive, use of these
materials in such structures would enable controlling the antenna beam characteristics,
bandwidth, and radiation efficiency.

Chiral-coated EM shieldings: Chiral-coated surfaces are feasible as EM shields compatible
for common EM ambients and pulsed electromagnetic (EMP) environments. Such surfaces



Electromagnetic Chiral Materials 565

can also be synthesized for RCS control [24). Salisbury shield realization with chiral
substances is also a conceivable product [25].

Chiralic material for EM focusing: Named as "chirolens" of spherical geometry, Enghetta
and Kowartz have indicated [24] a novel method of realizing two focal points corresponding
to two eigen modes of the EM field components present in the chiralic lens material. It is
indicated that such lens can focus one of the modes and defocus the other. Potential use of a
chirolens as couplers for waveguides, polarization filters, etc. has been suggested.
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Defining Terms
Chirality: (Right or left)-handedness.

Chiralic composite: A composite medium in which an achiralic host medium forms a
receptable for the dispersion of chiralic inclusions.

Chiralic materials: Medium wherein electric and magnetic fields are cross-coupled.
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Optical rotary dispersion (ORD): Geometry-induced rotation of plane of polarization of a
plane wave propagating across a medium.



