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Abstract

Biofilms have been of considerable interest in the context of food hygiene. Of special significance is the ability of
microorganisms to attach and grow on food and food-contact surfaces under favourable conditions. Biofilm formation is a
dynamic process and different mechanisms are involved in their attachment and growth. Extracellular polymeric substances
play an important role in the attachment and colonization of microorganisms to food-contact surfaces. Various techniques
have been adopted for the proper study and understanding of biofilm attachment and control. If the microorganisms from
food-contact surfaces are not completely removed, they may lead to biofilm formation and also increase the biotransfer
potential. Therefore, various preventive and control strategies like hygienic plant lay-out and design of equipment, choice of
materials, correct use and selection of detergents and disinfectants coupled with physical methods can be suitably applied for
controlling biofilm formation on food-contact surfaces. In addition, bacteriocins and enzymes are gaining importance and
have an unique potential in the food industry for the effective biocontrol and removal of biofilms. These newer biocontrol
strategies are considered important for the maintenance of biofilm-free systems, for quality and safety of foods.  1998
Elsevier Science B.V.
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1. Introduction (Allison and Sutherland, 1987). These mass of cells
further become large enough to entrap organic and

In nature and food systems, microorganisms get inorganic debris, nutrients and other microorganisms
attracted to solid surfaces conditioned with nutrients, leading to the formation of a microbial biofilm. The
that are sufficient for their viability and growth. term biofilm refers to the biologically active matrix
These microorganisms initially are deposited on the of cells and extracellular substances in association
surfaces and later get attached, grow and actively with a solid surface (Bakke et al., 1984). However,
multiply to form a colony of cells. In this regard, the according to Costerton et al. (1987) a biofilm is a
formation of organic polymers are essential which functional consortium of microorganisms attached to
helps in the proper colonization of microorganisms a surface and is embedded in the extracellular

polymeric substances (EPS) produced by the micro-
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nuisance, the term microbial fouling or biofouling is ments, bacteria along with other organic and inor-
generally implied. Biofouling refers to the undesir- ganic molecules like proteins from milk and meat
able formation of a layer of living microorganisms gets adsorbed to the surface forming a conditioning
and their decomposition products as deposits on the film. These organic and inorganic molecules, and the
surfaces in contact with liquid media. In dairy and microorganisms are transported to the surface by
food industry, biofouling causes serious problems diffusion or in some cases by a turbulent flow of the
such as impeding the flow of heat across the surface, liquid. The rate of transport and the extent of
increase in the fluid frictional resistance at the adsorption are equally important in this context
surface and increase in the corrosion rate at the (Characklis, 1981). The accumulation of molecules
surface leading to energy and product losses. For at the solid-liquid interface on food-contact surfaces
example, in case of heat exchangers, biofilms cause (commonly referred to as conditioning film) leads to
increased resistance both in liquid flow and heat a higher concentration of nutrients compared to the
transfer (Criado et al., 1994). In addition, the fluid phase. In the food processing systems, the
biofilms, including spoilage and pathogenic microfl- increased level of nutrients remaining on the food-
ora, formed on the food surfaces like that of poultry, contact surfaces acts as a conditioning film (Hood
other meat surfaces and in processing environments and Zottola, 1997). The nutrient transfer is also more
also offer considerable problems of cross contamina- rapid in a biofilm than for the bacterial cells in the
tion and post-processing contamination. aqueous phase. This increase in nutrient level

favours biofilm formation and is also dependent on
the type of the competitive culture associated with

2. Biofilm formation: mechanisms of microbial the biofilm (Jeong and Frank, 1994). The condition-
attachment ing also alters the physico-chemical properties of the

surface viz., surface free energy, changes in hydro-
The concept of bacterial attachment is not very phobicity and electrostatic charges (Dickson and

new and the early studies with buried slide method Koohmaraie, 1989) which may also affect the sub-
showed the attachment of soil bacteria to slide sequent sequence of microbial events.
surfaces. These slide techniques were first described There appears to be no evidence, however, that
by Zobell (1943) which formed the first published microorganisms always attach to a conditioned sur-
report on biofilms. However, in the late 70s, this face. In this regard, the microtopography of the
phenomenon was realized to be present universally food-contact surface is equally important to favour
in all natural environments (Costerton et al., 1978). bacterial retention, particularly, if the surface con-
The development of biofilms can occur on almost sists of deep channels and crevices to trap bacteria.
any surface in any environment in which viable Scanning electron micrographs have also shown that
microorganisms are present. In case of majority of food-borne pathogens and spoilage microorganisms
microorganisms, the adhering to solid substrate, may accumulate as biofilms on stainless steel, aluminium,
they be animate or inanimate, living or dead and/or glass, Buna-N and Teflon seals and nylon materials
organic or inorganic forms an essential prerequisite typically found in food-processing environments
to their normal life and reproduction. The formation (Herald and Zottola, 1988a,b; Mafu et al., 1990;
of biofilms per se is ubiquitous in aqueous environ- Notermans et al., 1991; Blackman and Frank, 1996).
ments. The role of bacterial attachment has been The nylon and teflon surfaces are smooth and the
very well studied in different habitats (Costerton et microorganisms appear to be attached. However,
al., 1987; Melo et al., 1992; Zottola and Sasahara, stainless steel surfaces have a rough appearance due
1994). Biofilm formation is a dynamic process and is to cracks and crevices sufficient to trap bacteria
shown to involve a series of steps. (Wirtanen et al., 1996), while aluminium surfaces

have larger crevices and exhibit a sponge-like ap-
2.1. Conditioning of a surface pearance. Such a topography allows the escape of

entrapped bacteria from the shear forces of the bulk
The formation of a biofilm virtually occurs on any liquid and even the mechanical methods of cleaning

submerged surface in any environment wherein the would be inadequate.
bacteria are present. In the food processing environ- It is also established that adsorption of certain



C.G. Kumar, S.K. Anand / International Journal of Food Microbiology 42 (1998) 9 –27 11

proteins to surfaces play an important role in the by the bacteria such as flagella, fimbriae, pili and the
microbial adhesion. Fletcher (1976) showed that exopolysaccharide (EPS) fibrils (Jones and Isaacson,
certain proteins like albumin, gelatin, fibrinogen and 1983; Hancock, 1991). In irreversible adhesion,
pepsin inhibited the attachment of a marine pseudo- various short-range forces involved include, dipole-
monad to polystyrene. Similarly, Meadows (1971) dipole interactions, hydrogen, ionic and covalent
also showed albumin to be inhibitory, while casein bonding and hydrophobic interactions. The poly-
and gelatin favoured the process of attachment. In meric fibrils form a bridge between the bacterial cell
another study, albumin was also found to be least and the substratum and this enables the irreversible
favourable for the adhesion of Listeria monocyto- association with the surface. In this process, the
genes to silica surfaces (Al-Makhlafi et al., 1995). removal of cells requires much stronger forces such
Milk and its components such as casein and b- as scrubbing or scrapping (Marshall et al., 1971).
lactoglobulin have also been found to inhibit the Spores exhibit a greater rate of adhesion than
attachment of Listeria monocytogenes and Salmonel- vegetative cells to food-contact surfaces. This pro-
la typhimurium (Helke et al., 1993). However, in the cess is mainly facilitated by the relatively high
presence of whey proteins, an increase in attachment hydrophobicity, in addition to hair-like structures on

¨of several milk-associated microorganisms to stain- the cell surface (Ronner et al., 1990; Husmark and
¨less steel, rubber and glass surfaces was observed by Ronner, 1992). On adhesion to surfaces, spores may

Speers and Gilmour (1985). germinate and the vegetative cells multiply and
produce exopolysaccharides.

2.2. Adhesion of cells The chemostat-coupled modified Robbin’s device
has been proved to be a successful technique for

The second step in the formation of biofilms is the studying biofilm adhesion and formation at con-
attachment of microorganisms to the conditioned trolled and low growth rates (Jass et al., 1995a). The
surface. This process may be active or passive and adhesion of microorganisms to a surface can also be
depends on the bacterial motility or the transporta- studied by measuring the hydrophobicity of the
tion of the planktonic (free floating) cells by gravity, bacterial surfaces by different methods (Mozes and
diffusion or fluid dynamic forces from the surround- Rouxhet, 1987) viz., bacterial adherence to hydro-
ing fluid phase. The physiochemical properties of the carbons (BATH), hydrophobic interaction chroma-
bacterial cell surface are important in determining tography (HIC) and the salt aggregation test (with
the adhesion of cells during this initial attachment ammonium sulphate). A correlation was observed
phase (van Loosdrecht et al., 1990). The bacterial between these three methods only when the micro-
adhesion is also effected by the nutrient availability organisms were strongly hydrophobic or hydrophilic
in the surrounding medium and the growth stage of (Mozes and Rouxhet, 1987; Sorongon et al., 1991).
the bacterial cells themselves. This adhesion of cells The variations in hydrophobicity depends on the
takes place mainly in two stages: a reversible mode of bacterial growth (Gilbert et al., 1991a) and
adhesion followed by an irreversible adhesion. the culture conditions (Spenceley et al., 1992). In a

Initial weak interactions developed between the chemostat, as the growth rate of the culture in-
bacterial cells and the substratum are referred to as creases, the hydrophobicity weakens (Allison et al.,
reversible adhesion. Various long range interaction 1990; Gilbert et al., 1991b). The hydrophobicity can
forces influencing the reversible adhesion process are also be modified by mechanical and enzymatic
the van der Walls attraction forces, electrostatic treatments (Rosenberg and Kjelleberg, 1986).
forces and hydrophobic interactions. During this The pH and temperature of the contact surface
stage, bacteria still show Brownian motion and can also have an influence on the degree of adhesion of
easily be removed by the fluid shear forces e.g. microorganisms. Pseudomonas fragi showed maxi-
merely by rinsing (Marshall et al., 1971). The mum adhesion to stainless steel surfaces, at the pH
irreversible attachment of cells is the next crucial range of 7 to 8, optimal for its cell metabolism
step in biofilm development. The repulsive forces (Stanley, 1983). Similarly, the effect of pH on the
mainly prevent the bacterial cells in making a direct attachment of Y. enterocolitica and L. monocyto-
contact with the surface, however, the contact still genes was also demonstrated by Herald and Zottola
occurs due to the production of surface appendages (1988a) and Herald and Zottola (1988b). In the
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earlier study, they also observed the effect of tem- not necessarily exist as a uniform layer throughout
perature and reported that Y. enterocolitica adhered the substratum surface. Further increase in the size of
better to stainless steel surfaces at 218C, rather than biofilm takes place by the deposition or attachment
at 358C or 108C. In the case of a marine bacterium, of other organic and inorganic solutes and particulate
Deleya mariana, maximum adhesion to a hydrophilic matter to the biofilm from the surrounding liquid
substratum was observed at 258C i.e., at the optimum phase (Melo et al., 1992).
temperature for growth, while the adhesion was
weaker at 198C and weakest at 378C (Shea et al., 2.4.1. Effect of interspecies microbial interactions
1991). The interactions of various microbial populations

during the initial stages of biofilm formation has a
2.3. Formation of microcolony significant effect on the structure and physiology of

the microbial biofilm (James et al., 1995). In natural
The irreversibly attached bacterial cells grow and communities, the microbial interactions observed are

divide by using the nutrients present in the con- complex and often are of mixed type, wherein more
ditioning film and the surrounding fluid environment. than one type of interaction occurs between species
This leads to the formation of microcolonies, which (Bull and Slater, 1982). In addition, the initial
enlarge and coalesce to form a layer of cells covering colonizing species may potentially encourage the
the surface. During this period, the attached cells colonization of species which are physiologically
also produce additional polymer (EPS) which helps compatible, while inhibiting the attachment of others.
in the anchorage of the cells to the surface and to The biofilm formed by the microbial communities
stabilize the colony from the fluctuations of the i.e., mixed species biofilms are often thicker and
environment (Characklis and Marshall, 1990). The more stable than monospecies biofilms. In an annular
surface microenvironment gets altered as the primary reactor, the average thickness of Klebsiella pneumo-
colonizers get attached, grow and divide and produce niae and Pseudomonas aeruginosa monospecies
the EPS (Lappin-Scott and Costerton, 1989). In case biofilms were 15 and 30 mm, respectively, while a
of pseudomonads, the production of exopolysac- biofilm comprising of both the species was 40 mm
charide has been observed during surface attachment thick (Siebel and Characklis, 1991). The EPS mainly
and the variations in the attachment among the helps in the colonization of other organisms to
populations may be due to different nutrient con- surfaces. It is presumed that in a mixed species
ditions (Ombaka et al., 1983; Uhlinger and White, biofilm, the EPS produced by one species may
1983; Jass et al., 1995a). enhance the stability of other species within a biofilm

and/or that stabilizing interactions may occur be-
2.4. Biofilm formation tween polymers of different species (Sutherland,

1983; McEldowney and Fletcher, 1987). In one
The continuous attachment of the bacterial cells to study, Sasahara and Zottola (1993) observed an

the substratum and its subsequent growth along with extended biofilm formation by Listeria monocyto-
associated EPS production, forms a biofilm. Multi- genes in association with a primary colonizing
layers of bacterial cells entrapped within the EPS- organism, Pseudomonas fragi, than with when either
containing matrices develop within the biofilm. The is grown individually.
biofilm formation is a fairly slow process and
reaches a few millimeters thick in a matter of days 2.5. Detachment and dispersal of biofilms
depending on the culture conditions (Melo et al.,
1992). The microorganisms within the biofilm are As the biofilm ages, the attached bacteria, in order
not uniformly distributed. They grow in the matrix- to survive and colonize new niches, must be able to
enclosed microcolonies interspersed within highly detach and disperse from the biofilm. The bacteria
permeable water channels (Costerton et al., 1994a). from the biofilm, mainly the daughter cells get

Composition of biofilms can be heterogeneous, detached individually or are sloughed off. Sloughing
due to the colonization of different microorganisms is a discrete process whereby periodic detachment of
possessing different nutritional requirements. It does relatively large particles of biomass from the biofilm
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occurs. This can be due to various factors such as the klis and Cooksey, 1983). In case of Pseudomonas
fluid dynamics and shear effects of the bulk fluid aeruginosa, alginate forms the major constituent of
(Rittmann, 1989; Applegate and Bryers, 1991), the glycocalyx and is important for the development
presence of certain chemicals in the fluid environ- of monospecies biofilms (Boyd and Chakrabarty,
ment or altered surface properties of the bacteria or 1995). The EPS produced by the microorganisms
substratum. The released bacteria may be transported plays an important role in initial adhesion, as well as
to newer locations and again restart the biofilm firm anchorage of bacteria to solid surfaces (Suther-
process (Marshall, 1992). land, 1983; Marshall, 1992). It can protect the

bacteria from dehydration as it can retain water
several times its own mass and only slowly becomes

3. Extracellular polymeric substances desiccated (Roberson and Firestone, 1992; Ophir and
Gutnick, 1994). For example, in Pseudomonas

After the initial contact with the surface, the aeruginosa, the presence of acetylated uronic acids
microorganisms start producing thin fibers which in the bacterial alginate increases its hydration
were evidenced by scanning electron microscopic capacity (Boyd and Chakrabarty, 1995). In addition,
examination (Firstenberg-Eden et al., 1979). These the biofilm polysaccharides are critical for the per-
fibers become thicker with time leading to a biofilm sistance and survival in hostile environments (Rinker
matrix. It is reported that within the biofilm matrix, and Kelly, 1996). It also helps in trapping and
many other organic and inorganic substances and retaining the nutrients for the growth of biofilms and
particulate matter may get entrapped along with the protecting the cells from the effects of antimicrobial
microbial products and other microorganisms which agents.
join to form a consortium protected by the
glycocalyx (Bryers, 1984; Marshall, 1992). Within
the matrix, daughter cells may also get entrapped, 4. Biofilms in food environments
which adds to the biofilm thickness. It was estab-
lished by Vandevivere and Kirchman (1993) that The attachment of the bacteria to the food product
exopolysaccharide production increased with attach- or the product contact surfaces leads to serious
ment of bacteria to a solid surface and that this hygienic problems and economic losses due to food
increase was not due to preferential attachment of a spoilage (Holah and Kearney, 1992; Mattila-San-
genotypic subpopulation with increased exopolysac- dholm and Wirtanen, 1992; Carpentier and Cerf,
charide production, as reinoculation of the biofilm 1993). In addition to that, a number of reports have
bacteria into liquid medium resulted in the reduction appeared on the persistance of several foodborne
of exopolysaccharide production to the level previ- pathogens on food contact surfaces and many new
ously found in planktonic cells. The development of organisms like Listeria monocytogenes (Farber and
an extensive extracellular matrix and growth in Peterkin, 1991), Yersinia enterocolitica (Kumar and
attached communities may also be important for the Singh, 1994), Campylobacter jejuni (Stern and
maintenance of optimum environmental conditions. Kazmi, 1989) and Escherichia coli O157:H7 (Doyle
Costerton et al. (1978) defined glycocalyx as the and Padhye, 1988; Doyle, 1991; Dewanti and Wong,
integral element of the outer membrane of the Gram 1995) have been added to the list.
negative cells and the peptidoglycan of the Gram In food systems, the attachment of microorga-
positive cells. This is known as either slime or nisms leading to the formation of biofilms may be
capsule and is composed of either fibrous polysac- undesirable and also detrimental. The majority of
charides or globular glycoproteins (Costerton et al., data generated to date indicate the attachment of
1985) and in its hydrated state contains water at bacteria to food contact surfaces under simulated
about 98–99% (Christensen and Characklis, 1990) or conditions. However, under suitable conditions, the
50–95% (Flemming et al., 1992). formation of biofilms can occur. The attachment of

Terms such as glycocalyx, slime, capsule and foodborne bacteria to inert food contact surfaces has
sheath have all been often used to refer to the EPS been the subject of a first published report (Zoltai et
associated with the biofilms (Geesey, 1982; Charac- al., 1981).
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Similarly, in the dairy industry, improperly process for waste water treatment, the development
cleaned and sanitized equipment (Czechowski, 1990; of a microbial biofilm contributes to a significant
Koutzayiotis, 1992) and air-borne microflora reduction in water flux and the deterioration of

¨(Schroder, 1984) are usually considered to be the overall membrane performance (Ridgeway et al.,
major sources of contamination of milk and milk 1983, Ridgeway et al., 1984). However, in the case
products. Cleaning-in-place (CIP) procedures are of dairy and food processing, the UF/RO membrane
usually employed in milk processing lines (Dun- systems find major application in the fractionation
smore, 1981; Dunsmore et al., 1981). However, the and concentration of liquid foods like skim milk and
limitation of CIP procedures is the accumulation of whey, and the clarification of beverages and fruit
microorganisms on the equipment surfaces (Maxcy, juices. An inherent feature of these processes is that
1964, 1969; Mattila et al., 1990) resulting in biofilm the active membrane surface will come in contact
formation. The persistance of accumulated micro- with the feedstock. Even a small degree of ad-
organisms in the form of a biofilm may cause post- sorption causes pore blockage and as a result the
processing contamination, leading to lowered shelf filters get clogged, a phenomenon called fouling,
life of the product (Zottola, 1994). The transmission leading to a reduction in permeate flux rate and loss
of pathogens can also result from aerosols produced in the product yields (Cheryan, 1986). This fouling
during the cleaning of food-processing surfaces of the membranes may also favour the formation of
(Kang and Frank, 1990). If pathogens are present, biofilms.
then consumption of the contaminated product may With regard to the food surfaces, many studies
pose a health risk (Dunsmore et al., 1981; Lewis and carried out by different research workers have shown
Gilmour, 1987; Koutzayiotis, 1992). the attachment of different microorganisms to poul-

The other common sources involved in biofilm try surfaces (Notermans and Kampelmacher, 1974;
accumulation are the floors, waste water pipes, bends Thomas and McMeekin, 1980; Lillard, 1985, 1986,
in pipes, rubber seals, conveyor belts, stainless steel 1988) and meat (Butler et al., 1979). These organ-
surfaces, etc. Buna-N and Teflon seals have also isms have not only been shown to be associated with
been implicated as important sites for biofilm forma- slaughtering process but are also responsible for
tion (Fletcher, 1985; Mafu et al., 1990; Blackman cross contamination of uncontaminated carcasses
and Frank, 1996). Herald and Zottola (1988b) ob- (Anand et al., 1989a). However, the interaction
served the attachment of Listeria monocytogenes to profile of different food pathogens on chicken car-
stainless steel and produced attachment fibrils. The cass surfaces did not reveal any specific influence on
pathogen also attached to glass, polypropylene and the growth pattern of these organisms (Anand et al.,
rubber (Mafu et al., 1990) and produced a sanitizer- 1994). Postmortem aging of chicken carcasses at 58C
resistant biofilm on glass, stainless steel and Buna-N prior to freezing also resulted in a substantial in-
rubber surfaces (Frank and Koffi, 1990; Lee and crease in these organisms and coliforms recorded a

¨Frank, 1991; Ronner and Wong, 1993). The number highest multiplication rate as compared to Staphylo-
of bacteria recovered from these surfaces were high coccus aureus and yeast and molds (Anand et al.,
and dependent on the length of exposure time. It was 1989b; Pandey et al., 1989). The attachment of
also found that hydrophobic interactions viz., electro- Listeria monocytogenes (Chung et al., 1989; Dic-
static and exopolymer interactions were responsible kson, 1990) and Pseudomonas fragi (Schwach and
for the attachment of L. monocytogenes to various Zottola, 1982) to beef surfaces has also been studied.
surfaces (Mafu et al., 1991; Blackman and Frank, However, these studies did not clearly reflect the
1996). These bacteria may also act as a source for formation of biofilms per se with regard to these
post-pasteurization contamination (Austin and surfaces.
Bergeron, 1995).

In the recent years, membrane technologies like
ultrafiltration (UF) and reverse osmosis (RO) have 5. Adverse technological effects of biofilms
been widely used in the dairy and food industry and
in the waste water treatment processes (Golomb and The formation of biofilms in drinking water
Besik, 1970; Glover, 1985; Cheryan, 1986). In a RO distribution systems leads to decrease in water
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velocity and carrying capacity, clogging of pipes, both external and internal surfaces for enumeration
increase in energy utilization and decrease in ef- of bacteria (Flemming and Geesey, 1991). These
ficiency of operations (Ridgeway and Olson, 1981; methods for biofilm enumeration have varied sig-
LeChevalier et al., 1987). This development is nificantly. Scraping (Frank and Koffi, 1990) and
mainly due to the traces of nutrients in the water vortexing (Mustapha and Liewen, 1989) can also be
supply and even the high levels of residual chlorine employed.
may also not prevent the biofilm formation (Block, Different methods in microscopy, especially scan-
1992; Marshall, 1992). ning electron microscopy of surfaces have gained

Biofouling in heat exchangers and cooling towers considerable attention in the study of biofilms
has been a major problem for many years. The (Notermans et al., 1991; Zottola, 1991). In some of
bacterial attachment greatly reduces the heat transfer the studies, epifluorescence microscopy has also
and operating efficiency of the processing equipment been used (Holah et al., 1988, Holah et al., 1989;
(Lehmann et al., 1992; Mattila-Sandholm and Wir- Wirtanen and Mattila-Sandholm, 1993). Interference
tanen, 1992; Bott, 1992). In the filtration systems, reflection microscopy, atomic force microscopy and
biofilm formation also greatly reduces the per- confocal laser scanning microscopy are some other
meability of the membranes (Flemming et al., 1992). techniques that have attracted considerable interest in
The microbial activity in biofilms, especially by the the study of biofilms (Ladd and Costerton, 1990;
sulphate-reducing or acid-producing bacteria causes Caldwell et al., 1992; Beech, 1996; Debeer et al.,
corrosion of metal surfaces (Costerton and Lappin- 1997). Moreover, in the recent past, environmental
Scott, 1989). scanning electron microscopy (ESEM) has also been

In addition, the submerged surfaces in all marine widely used for biofilm enumeration (Little et al.,
and aquatic environments are the zones of microbial 1991; Hodgson et al., 1995). This technique helps in
biofilm accumulation. The fouling of ship hulls are visualizing samples without the need of conventional
mainly caused by buildup of biofilms consisting of microscopic procedures like dehydration, fixation
algae (single-celled), diatoms and bacteria (Lewin, and staining. Also this method per se preserves many
1984). Many antifouling paints are designed to of the structures associated with biological samples
prevent such animal colonization, however, none of which remain in a hydrated and viable state. A
them prevents the formation of biofilms. The forma- replica method using a hydrophilic polyvinyl silox-
tion of biofilms increases the fluid frictional resist- ane impression material was also developed for the
ance and fuel consumption (Cooksey and Wiggles- study of biofilms (Marrs et al., 1995). Very recently,
worth-Cooksey, 1992). This indirectly has an econ- cellular automation models have also found applica-
omic impact on the marine and naval transport and tion for the study of biofilms (Wimpenny and
eventually the food industry. Colasanti, 1997).

However, there are some limitations that arise
during sampling of biofilms. Grooves, crevices, dead

6. Methods for the study of biofilms ends, corrosion patches, etc. are some of the areas
where biofilms can grow and are hard to access.

The formation of biofilms on food-contact surfaces Thus, sampling of such areas becomes more difficult.
mainly causes the post-contamination of foods which Some of the bacteria in biofilms on the surfaces in
may subsequently lead to food spoilage or food food and dairy environments are subjected to various
borne illnesses, if pathogens are present. The enume- stresses such as starvation, chemicals, heat, cold and
ration of biofilms helps in confirming the source and desiccation which injure the cells, rendering them
extent of contamination and the type(s) of micro- non-culturable (Wong and Cerf, 1995). However, in
organisms involved as contaminating agents. The a recent survey, viable but non-culturable Salmonella
different methods employed for sampling and typhimurium subjected to chlorine treatment were
enumeration of biofilms are swabbing, rinsing, agar successfully enumerated by employing the procedure
flooding and agar contact methods. These conven- of direct viable count (DVC) in combination with an
tional cultivating methods have been used most indirect fluorescent-antibody technique (Leriche and
frequently since years as a quantitative method on Carpentier, 1995). Even then, a small proportion of
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bacteria may also escape counting by the usual is the incomplete penetration of the biofilm by such
conventional culturing techniques, for which appro- reactive biocides (Huang et al., 1995) and the wide
priate media and culture methods should be devised. variation in the environmental conditions existing on

the food-contact surfaces. The presence of abiotic
particles of kaolin and calcium carbonate in biofilms
of Pseudomonas aeruginosa and Klebsiella pneumo-

7. Increased resistance of bacteria in biofilms to niae are also implicated for the reduced biocide
antimicrobial compounds efficiency (Srinivasan et al., 1995).

Furthermore, antimicrobial agents are far more
It is well established that bacterial biofilms exhibit effective against actively growing cells i.e., the best

an increased resistance to antimicrobial treatments disinfectant for planktonic cells are not necessarily
than the individual cells grown in suspension (Pet- the suitable ones for biofilm cells (Holah et al.,
rocci, 1983; Mustapha and Liewen, 1989; Frank and 1990). This implies that the bacteria within the
Koffi, 1990; Krysinski et al., 1992). This resistance biofilm exhibits a varied physiological pattern and
has been widely observed and is attributed to the showed nutrient and oxygen gradients across the
varied properties associated with the biofilm includ- biofilm. The cells within the biofilm were found to
ing; reduced diffusion, physiological changes due to receive less oxygen and fewer nutrients than those
reduced growth rates and the production of enzymes cells at the biofilm surface (Brown et al., 1988). In
degrading antimicrobial substances. Further, it is addition, in cases of serious biofouling, thick
difficult to establish that any single mechanism biofilms are formed which may include many
caused the resistance; rather, the combined mecha- metabolically dormant and/or dead cells. This state
nisms create the resistant populations. of the bacterial cells of the biofilm may have an

A characteristic feature of microbial biofilms is the altered growth rate and physiology, resulting in
presence of an exopolysaccharide matrix embedded increased resistance to antimicrobial agents (Gilbert
with the component cells as mentioned earlier. This et al., 1990; Evans et al., 1991; McFeters et al.,
exopolysaccharide matrix may act to various degrees 1995). In mixed biofilms, competition for nutrients
as a diffusion barrier, molecular sieve and adsorbent results in nutrient deficiency, which also has a major
(Boyd and Chakrabarty, 1995). The antimicrobial role in the increased resistance of biofilms to anti-
resistance exhibited by the biofilm is related to the microbial treatments (Berg et al., 1982; Jones and
3-dimensional structure and the resistance is lost as Pickup, 1989). Some of the studies with food-borne
soon as this structure is disrupted (Hoyle et al., bacteria have indicated that resistance against various
1992). Therefore, the production of excess amounts disinfectants is more severe in older biofilms (more
of exopolysaccharide by the bacteria during biofilm than 24 h) than in young ones (Anwar et al., 1990;
formation and growth may protect the innermost Frank and Koffi, 1990; Lee and Frank, 1991; Wir-
cells by binding with antimicrobial substances and tanen and Mattila-Sandholm, 1992).
quenching their effect as they diffuse through it Various researchers have demonstrated an in-
(Farber et al., 1990; Hoyle et al., 1990; Stewart, creased resistance of bacterial biofilms towards
1996). different antibiotics (Nickel et al., 1985; Widmer et

In some of the studies, it was observed that al., 1990; Anwar et al., 1992). The possible mecha-
disinfectants like peracetic acid, mercuric chloride nism proposed for this resistance to antibiotics by the
and formaldehyde have been shown to have no effect bacteria was the production of antibiotic-degrading
on biofilms (Carpentier and Cerf, 1993). It is also enzymes i.e. b-lactamases. Such enzymes degrade
reported that Listeria monocytogenes attached to and inactivate the antibiotics as they permeate
food-contact surfaces also exhibited increased resist- through the cell envelope to their target sites. In
ance to conventional sanitizers like acid anionic adherent biofilms, many of the similar hydrolytic
sanitizers and quarternary ammonium compounds enzymes are produced and they become trapped and
(Petrocci, 1983; Mustapha and Liewen, 1989; Frank concentrated within the biofilm matrix, exhibiting
and Koffi, 1990). The reasonable explanation for the enhanced protective properties. Moreover, the in-
reduced efficacy of such agents against the biofilms creased resistance by biofilms may also be due to the



C.G. Kumar, S.K. Anand / International Journal of Food Microbiology 42 (1998) 9 –27 17

changes of the molecular targets of the antibiotics Wirtanen, 1992; Holah, 1992). In addition, the
(Anwar et al., 1992; Vergeres and Blaser, 1992). quality and smoothness of the equipment were found

to be equally important (European Hygienic Equip-
ment Design Group, 1993b,c). The mechanical or

8. Control and removal of biofilms electrolytic treatment of stainless steel also enabled
the production of smooth surfaces.

Generally, an effective cleaning and sanitation The control of biofilms represents one of the most
programme, when included in the process from the persistent challenges within food and industrial
very beginning, will inhibit both accumulation of environments where the microbial communities are
particulates and bacterial cells on equipment surfaces problematic. The biofilms in the food industry can be
and subsequent biofilm formation (Dunsmore et al., eliminated by adopting different strategies like phys-
1981; De Goederen et al., 1989; Czechowski and ical and chemical methods. In addition, the bio-
Banner, 1990; European Hygienic Equipment Design logical means has been the newer dimension in the
Group, 1993a). However, an inappropriate cleaning recent years for the biocontrol of bacterial biofilms.
strategy would lead to biofilm formation and increase
the biotransfer potential (Dunsmore et al., 1981; De
Goederen et al., 1989; Czechowski and Banner, 8.1. Physical methods
1990; Hood and Zottola, 1995). Since, removal of
biofilms is a very difficult and demanding task, a The newer physical methods used for the control
complete and cost-effective cleaning procedure of biofilms include super-high magnetic fields
should be developed (Pontefract, 1991; Mattila-San- (Okuno et al., 1993; Pothakamury et al., 1993),
dholm and Wirtanen, 1992; Zottola and Sasahara, ultrasound treatment (Jeng et al., 1990; Pitt et al.,
1994). 1994; Qian et al., 1997), high pulsed electrical fields

The food-processing equipment design is also on their own (Sale and Hamilton, 1967; Hamilton
important to achieve better cleanability of the food- and Sale, 1967; Castro et al., 1993; Pothakamury et
contact surface once bacterial adhesion has occurred. al., 1996) and in combination with organic acids
The mechanical treatment in cleaning proved effi- (Liu et al., 1997), low electrical fields both on their
cient in the removal of biofilms, however, the own (Davis et al., 1991) and as enhancers of
equipment design often made this very difficult biocides (Blenkinsopp et al., 1992) have been cur-
(Dunsmore et al., 1981; Lelieveld, 1985; Mosteller rently investigated. Davis et al. (1991) reported that
and Bishop, 1993). Comparative cleaning studies very low currents of 200 and 400 mA, using silver,
carried out on materials like stainless steel, glass, carbon and platinum electrodes killed planktonic
nylon and polyvinyl compounds showed no signifi- cells of Gram-positive and Gram-negative bacteria
cant changes in the cleanability when the surfaces and Candida albicans. The biocidal effect was
were new (LeClercq-Perlat and Lalande, 1994). primarily attributed to iontophoresis, the generation
However, with time, stainless steel exhibited better of ions from chlorine-containing components like
hygienic properties by resisting damage caused by NaCl, CaCl and NH Cl in a simple salts medium2 4

the cleaning process. Even the application of sanitiz- (Davis et al., 1989, 1994). In the absence of any
ers after cleaning process to eliminate residual antibiotics or biocides, the medium containing the
bacteria sometimes also caused corrosion of surfaces chlorine compounds had the highest antimicrobial
(Dunsmore et al., 1981). effects in the presence of an electrical current (Davis

The important aspects essential in controlling et al., 1992).
biofilm formation and/or minimizing the biotransfer Recently, low electrical currents in combination
potential in the food-processing equipments like with antibiotics was successfully employed for
tanks, pipelines, joints and the accessories are good biofilm control (Costerton et al., 1994b; Jass et al.,
design practices. These mainly include the proper 1995b; Jass and Lappin-Scott, 1996). It was ob-
choice of equipments, materials and accessories, served that the bioelectric effect generated by the
correct construction, process layout and process combined use of antibiotics with low levels of
automation (Lelieveld, 1985; Mattila-Sandholm and electric current proved more effective in controlling
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the biofilms. The possible mechanism established for 1990), chlorine (Characklis, 1989), iodine (Cargill et
this bioelectric effect is that the electric current drive al., 1992) and hydrogen peroxide (Christensen, 1989;
the charged molecules and antibiotics into the cells Juven and Pierson, 1996). Monolaurin (glycerol
through the biofilm matrix, thus increasing the mass monolaurate) was also found to be lethal to Listeria
transfer (Davis et al., 1992; Costerton et al., 1994b; monocytogenes at low concentrations (Oh and Mar-
Rajnicek et al., 1994). Even though the antibiotic shall, 1992, 1993a,b). Further, in a later study, it was
moved into the cell and to the target site much more demonstrated by Oh and Marshall (1995) that mono-
quickly in potentially lethal concentrations, it was laurin (50 mg/ml) combined with heat treatment at
still dependent on the rate of growth and metabolism 658C for 5 min completely destroyed the biofilm
of microorganisms for its antimicrobial activity formed by L. monocytogenes. In addition, a synergis-
(Taber et al., 1987; Widmer et al., 1991). This also tic interaction between monolaurin and organic acids
suggested that the biofilm age and activity were the like acetic acid also caused a pronounced inhibition
limiting factors in the antibiotic effectiveness (Jass et of L. monocytogenes (Oh and Marshall, 1994, Oh
al., 1995b). The traditional strategy, i.e. the use of a and Marshall, 1996). Very recently, cetylpyridinium
mechanical method like brushing, obviously should chloride (CPC) was reported for its application in
not be neglected (Exner et al., 1987). poultry processing industry as an effective agent for

the reduction of attached Salmonella on poultry skin
(Kim and Slavik, 1996; Breen et al., 1997).

8.2. Chemical methods The impregnation of materials with biocides have
shown to play a major role in resisting the bacterial

It is speculated that before application of a dis- colonization for as long as the antibacterial agents
infectant, it is essential to eliminate as many micro- are released from the surfaces. Antifoulant paints
organisms as possible. However, the microorganisms containing silver have also proved effective in
become far more sensitive to disinfectants once they controlling mixed biofilms containing Legionella
have been detached from the surface to which they pneumophila (Rogers et al., 1995). Food packaging
were adhering. The mechanical or chemical breakage materials containing antimicrobial compounds have
of the polysaccharide matrix is equally essential for gained practical importance in the recent years for
successful biofilm control, as the matrix protects the the biocontrol of food-borne pathogenic and spoilage
microorganisms with decreased effects of detergents microorganisms on food surfaces. These antimicro-
and sanitizers (Blenkinsopp and Costerton, 1991; bial compounds incorporated in the packaging ma-
Brackett, 1992; Czechowski and Banner, 1990; terial migrates to the food surface where microbial
Wirtanen and Mattila-Sandholm, 1993, 1994). When contamination is eliminated. The coupling of a
no mechanical treatment is given, the disinfectants polymer with an antifungal agent, methyl-1-butylcar-
leave the slime intact, which may favour biofilm bamoyl-2-benzimidazolecarbamate (Halek and Garg,
buildup in crevices and seams, etc. after the cleaning 1989) and the incorporation of imazalil, an an-
procedure (Pontefract, 1991; Zottola and Sasahara, timycotic agent into polyethylene films used for
1994; Hood and Zottola, 1995). Detergents con- cheese packaging have been successfully employed
taining chelating agents like EDTA and ethylene for inhibiting surface molds (Weng and Hotchkiss,
glycol-bis (b-aminoethyl ether) N,N,N9,N9-tetracetic 1992). In addition, the incorporation of antimicrobial
acid (EGTA) helped in removal of biofilms agents like anhydrides (Weng and Hotchkiss, 1993)
(Turakhia et al., 1983; Camper et al., 1985). The and benzoyl chloride (Weng et al., 1997) into food
chelators, by binding calcium and magnesium ions, packaging materials have recently been demonstrated
also destabilize the outer membranes of the cells for controlling the surface mold contamination.
(Izzat et al., 1981; Turakhia et al., 1983).

Studies have shown that some detergents are
bactericidal and some disinfectants may even depoly- 8.3. Biological means
merize EPS, thus enabling the detachment of
biofilms from surfaces, e.g. oxidants such as Newer strategies devised for the biocontrol of
peracetic acid (Exner et al., 1987; Holah et al., biofilm formation may be the adsorption of bioactive
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compounds like bacteriocins onto food-contact sur- 9. Some beneficial aspects of biofilms
faces for the inhibition of adhesion of bacteria. By
definition, bacteriocins are proteinaceous antimicro- Not all biofilms cause problems and in many
bial compounds exhibiting bactericidal properties natural environments, the maintenance of water
(Tagg et al., 1976). Nisin, a well known and most quality is brought about by the microbial metabolism
applied antimicrobial peptide has proven to be an in biofilms. The bacteria present in these biofilms
effective inhibitor of many food pathogens and biodegrade many of the toxic compounds and there
spoilage bacteria, especially sporeformers (Hurst, by minimize the buildup of pollutants, thus acting as
1981; Ray, 1992). In 1988, nisin has been approved pollutant monitors (Fuchs et al., 1996). Such sys-
by the FDA as a GRAS (Generally Recognized As tems, using mixed microbial consortia have found
Safe) food additive for the control of Clostridium application in fluidized beds and trickling filters for
botulinum spores in processed cheese spreads (Food sewage and waste water management and in water
and Drug Administration, 1988). Reports also purification plants and also in waste gas treatment
showed that surfaces adsorbed with nisin, lowered (Kanekar and Sarnaik, 1991, 1995; Raunkjaer et al.,
the incidence of surface contamination by L. mono- 1997; Pedersen et al., 1997). The organic nutrient-
cytogenes on model food-contact surfaces (Daeschel trapping capability of biofilms helps in reducing the
et al., 1992; Bower et al., 1995). Application of organic content of the waste waters before they are
bacteriocins have also been tried out on food packag- released into the water streams or used for irrigation
ing materials for the biocontrol of L. monocytogenes purposes. In the recent years, microbial biofilms have
on meats (Ming et al., 1997). Similarly, the applica- also received considerable attention from the view-
tion of lactic cultures and their cell-free extracts have point of bioremediation of various industrial effluents
also been reported to selectively inhibit different (Sarnaik and Kanekar, 1995; Nigam and Marchant,
spoilage and pathogenic microflora on the surfaces of 1995; Nigam et al., 1996) and in the nitrification
dressed poultry (Anand et al., 1995). process for the treatment of high strength nitrogen

Enzymes have also proved effective in cleaning fertilizer waste water (Beg et al., 1995; Cecen and
the extracellular polymers which form the biofilm Orak, 1996).
matrix and thus helps in removal of biofilms (Kumar, Biofilms represent a natural form of cell immobili-
1997; Potthoff et al., 1997). The specific enzymes zation. The immobilized microorganisms have also
required mostly vary according to the type of been successfully employed in bioreactors to im-
microflora making up the biofilm. In one study, a prove the productivity and stability of the fermen-
blend of enzyme mixture consisting of protease, tation processes (Demirci et al., 1993a,b; Demirci
a-amylase and b-glucanase was found effective in and Pometto, 1995; Pakula and Freeman, 1996). The
cleaning a simulated industrial biofilm formed during biofilms also find application in the production of
paper pulp manufacture (Wiatr, 1991). Workers of industrial products like acetic acid, ethanol and
the Genencor International, Inc., USA have de- polysaccharides and in addition for metal ore leach-
veloped enzymes called endoglycosidases which ing (Bryers, 1990; Macaskie et al., 1995). Even the
deglycosylate biopolymers like glycoproteins which gastrointestinal tract are colonized by lactic acid
are widely distributed in living organisms. They bacteria and Bifidobacterium spp. which constitute as
employed rDNA technology to develop Endo-b-N- a major part of the natural microflora (Savage, 1977;
acetyl-glucosaminidase H (Endo H) as a cleaning Fuller, 1989) and serves as a protective layer against
agent. Endo H had a unique property to remove the colonization of pathogenic bacteria. These organ-
bacteria (Staphylococci and E. coli) from glass and isms when present in sufficient number create a
cloth surfaces in buffer and detergent solutions (Lad, healthy equilibrium between the beneficial and po-
1992). Very recently, an enzymatic preparation com- tentially harmful microflora in the gut (Collins and
prising of exopolysaccharide-degrading enzymes, Hardt, 1980; Anand et al., 1984; Vanbelle et al.,
particularly the colanic acid-degrading enzymes, 1989). These organisms also promote a probiotic
derived from a Streptomyces isolate was reported for effect when consumed through various fermented
the removal and prevention of biofilm formation (van foods (Hawkins, 1993; Johannsen et al., 1993;
Speybroeck et al., 1996). Salminen and Tanaka, 1997).
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Anand, S.K., Mahapatra, C.M., Pandey, N.K., Verma, S.S., 1989a.10. Conclusions
Microbial changes on chicken carcasses during processing.
Indian J. Poultry Sci. 24, 203–209.

In the past, extensive studies have been carried out
Anand, S.K., Pandey, N.K., Mahapatra, C.M., Verma, S.S., 1989b.

on various aspects of biofilms; however, with regard Effect of storage on microbial quality of dressed chicken held
to the sampling and enumeration of bacteria from at 2 188C. J. Food Sci. Technol. 26, 296–297.

Anand, S.K., Pandey, N.K., Verma, S.S., Gopal, R., 1994. Interac-dairy and food contact surfaces and environments,
tions of spoilage and pathogenic microflora during refrigeratedvery little practical information has been gained.
storage of dressed chicken. Indian J. Poultry Sci. 29, 249–253.Experiments related to the attachment of the micro-

Anand, S.K., Pandey, N.K., Verma, S.S., Gopal, R., 1995. In-
organisms in food processing environments must be fluence of some lactic cultures on microbial proliferation and
carried out under the conditions existing in those refrigerated shelf stability of dressed chicken. Indian J. Poultry

Sci. 30, 126–133.environments. Such studies will help to understand
Anwar, H., Dasgupta, M., Costerton, J.W., 1990. Testing thefully the interactions between the biotic and abiotic

susceptibility of bacteria in biofilms to antibacterial agents.entities in the food processing operations and to
Antimicrob. Agents Chemother. 34, 2043–2046.

assess properly the risks posed by spoilage organ- Anwar, H., Strap, J.L., Costerton, J.W., 1992. Eradicating of
isms and food borne pathogens. They are also biofilm cells of Staphylococcus aureus with tobramycin and
needed for the effective analysis of the impacts of cephalexin. Can. J. Microbiol. 38, 618–625.

Applegate, D.H., Bryers, J.D., 1991. Effects of carbon and oxygencleaning and sanitation from the microbiological
limitation and calcium concentrations on biofilm recoveryviewpoint.
processes. Biotechnol. Bioeng. 37, 17–25.

In view of the increased resistance of bacterial
Austin, J.W., Bergeron, G., 1995. Development of bacterial

biofilms to antimicrobial treatments, new strategies biofilms in dairy processing lines. J. Dairy Res. 62, 509–519.
should be implemented for the control of biofilms. It Bakke, R., Trulear, M.G., Robinson, J.A., Characklis, W.G., 1984.

Activity of Pseudomonas aeruginosa in biofilms: steady state.is found necessary to formulate new cleaning agents
Biotechnol. Bioeng. 26, 1418–1424.and disinfectants for effective removal of biofilms.

Beech, I.B., 1996. The potential use of atomic force microscopyUse of enzymes should be considered as a supple-
for studying corrosion of metals in the presence of bacterial

ment to the present cleaning and disinfection agents biofilms—An overview. Int. Biodeteriorat. Biodegradat. 37,
and so should the use of bacteriocins, however, more 141–150.

Beg, S.A., Hassan, M.M., Chaudhry, M.A.S., 1995. Multi-sub-studies should be carried out to support their effec-
strate analysis of carbon oxidation and nitrification in antiveness against biofilms. Each biofilm problem
upflow packed-bed biofilm reactor. J. Chem. Technol. Biotech-should be analysed in detail to determine its nature
nol. 64, 367–378.

and an effective cleaning and disinfection operation Berg, J.D., Matin, A., Roberts, P.V., 1982. Effect of the antecedent
defined and implemented. growth conditions on sensitivity of Escherichia coli to chlor-

ine dioxide. Appl. Environ. Microbiol. 44, 814–818.
Blackman, I.C., Frank, J.F., 1996. Growth of Listeria monocyto-

genes as a biofilm on various food-processing surfaces. J.
Food Prot. 59, 827–831.
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