Technical Note

A novel effective medium theory for modelling the thermal conductivity of porous materials

Lunlun Gong a, Yonghong Wang b, Xudong Cheng a,*, Ruifang Zhang a, Heping Zhang a

a State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China
b School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China

A R T I C L E I N F O

Article history:
Received 6 May 2013
Received in revised form 16 August 2013
Accepted 18 September 2013

Keywords:
Thermal conductivity
Porous materials
Effective medium theory
Models

A B S T R A C T

A novel effective medium theory was proposed to model the thermal conductivity of porous materials. In this theory, phases (or components) are treated as small spheres dispersing into an assumed uniform medium with the thermal conductivity k_0. A simple algebraic expression for the thermal conductivity based on this theory was derived, in which each has a distinct physical basis. The expression can unify five basic structural models (Series, Parallel, two forms of Maxwell–Eucken, effective medium theory) through variations of k_0. Furthermore, the feasibility of the model was evaluated using the experimental data from previous literatures and those calculated by this model.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays there are heat attentions on porous materials due to their widespread industrial applications. The thermal conductivity plays an important role in the performance of these materials. From the point of view of heat conduction, porous materials can be considered as a two-phase (or two-component) system, viz. a solid skeleton and air, and thermal conductivity can be used to describe heat transfer through this complex system [1]. In this case, there are many analytical models proposed to predict the thermal conductivity of porous materials [2,3].

The thermal conductivity of porous materials is a complex property, as it is not only dependent on the properties of the solid component and porosity but also the structure of the materials [4]. For simple structures five basic structural models including the Series and Parallel models [5], Maxwell–Eucken models [6], effective medium theory (EMT) equation [7] were proposed. Afterwards some models for slightly complex structures such as the area contact model [8] and unit cell method [9] were constructed. However, each of these models assumes a certain physical structure and could not be applicable to all types of structure. Instead, a common approach is adding an empirical weighting parameter in basic structural models to account for differences in structure [10]. But the parameter is determined experimentally without any distinct physical basis, and cannot reflect the actual structure of the porous materials.

In this paper, a procedure for modelling the thermal conductivity of porous materials using a novel effective medium theory was presented. Five basic structural models can be unified by a simple equation without any empirical parameter.

2. Theory

Five basic structural models mentioned-above (shown schematically in Fig. 1), including the Series, Parallel, Maxwell–Eucken (two forms) and EMT models, are shown below in respective order for a two-component system [11]:

\[k_e = \frac{1}{(1 - \nu_2)/k_1 + \nu_2/k_2} \]

(1)

\[k_e = k_1(1 - \nu_2) + k_2 \nu_2 \]

(2)

\[k_e = k_1 2k_2 + k_2 - 2(k_3 - k_2)\nu_2 \]

\[\frac{2k_1 + k_2 + (k_1 - k_2)\nu_2}{2k_2 + k_1 + (k_2 - k_1)(1 - \nu_2)} \]

(component 1 continuous)

(3)

\[k_e = k_2 2k_2 + k_1 - 2(k_3 - k_1)(1 - \nu_2) \]

\[\frac{(1 - \nu_2)(k_1 - k_2) + \nu_2 k_2 - k_e}{k_1 + 2k_2 + k_2 + 2k_e} = 0 \]

(component 2 continuous)

(4)

where \(k \) and \(\nu \) are thermal conductivity and volume fraction, and subscripts of e, 1 and 2 represent the two-component material system, components 1 and 2, respectively.
In order to make these basic structural models more generic for different structures, an extra parameter is sometimes introduced. For example, Krischer proposed a weighted harmonic mean of the Series and Parallel models, where the weighting parameter \(f \) (sometimes referred to as the ‘distribution factor’) has a value ranging between 0 and 1 [10]:

\[
k_e = \frac{1}{\frac{1}{k_1} + \frac{1-f}{k_2} + \frac{f}{k_3}}.
\]

Similarly, Maxwell–Eucken and EMT models have been modified by Hamilton and Kirkpatrick respectively, as follows:

\[
k_e = k_1 + k_2 - (f-1)(k_1 - k_2)v_2 \quad \frac{(f-1)k_1 + k_2 - (f-1)(k_1 - k_2)v_2}{(f-1)k_1 + k_2 - (f-1)(k_1 - k_2)v_2}
\]

and

\[
(1 - v_2)\frac{k_1 - k_2}{k_1 + (f/2 - 1)k_2} + v_2\frac{k_2 - k_3}{k_2 + (f/2 - 1)k_3} = 0.
\]

In principle, the modified models such as Eqs. (6)–(8) may be used to predict the thermal conductivity of any structure with a suitable value of \(f \), as long as the data lie within the envelope bounded by the Series and Parallel models. Although these modified models have been widely used, the weighting parameter \(f \) is determined empirically without any distinct physical basis.

In this paper, we propose a novel effective medium theory for multi-phase (or multi-component) materials. Fig. 1 shows the schematic illustrations of the novel effective medium theory in present work. The primary assumption is that phases (or components) are treated as small spheres dispersing into an assumed uniform medium with the thermal conductivity \(k_m \). If a material consists of \(i \) phases, phase \(i \) is considered as \(n \) small spheres of radius \(R_i \) and thermal conductivity \(k_i \) contained within an uniform medium with thermal conductivity \(k_m \).

For a single small sphere region within a uniform medium under steady-state conditions, the temperature distribution is governed by Laplace’s Equation, as shown below in two-dimensional polar coordinates:

\[
\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \sin \theta \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) = 0
\]

following boundary conditions:

- at \(r = 0 \), \(T = T_0 \);
- at \(r = R_i \), \(k_i \frac{\partial T}{\partial r} = k_m \frac{\partial T}{\partial r} \) and \(\frac{\partial T}{\partial r} = \frac{\partial T}{\partial \theta} \);
- at \(r \gg R_i \), \(T_m = br \cos \theta \)

where, \(r \) and \(\theta \) are polar radius and polar angle in polar coordinate, \(T \) is the temperature, the constant \(b \) \((k/m)\) is the magnitude of the temperature gradient in the continuous medium, and subscript of \(i \) and \(m \) represent phase \(i \) and assumed uniform medium. A general solution of Eq. (9) is:

\[
T = A + \frac{B}{r} + Cr \cos \theta + D r^2 \cos \theta
\]

Using the boundary conditions to substitute for \(A, B, C \) and \(D \) in Eq. (10) yields:

\[
T_i = b \frac{3k_m}{k_i + k_m} r \cos \theta \quad \text{(within the sphere)}
\]

and

\[
T_m = br \cos \theta - \frac{\Sigma n R_i^3 k_i - k_m \cos \theta}{k_i + 2k_m} \quad \text{outside the sphere}.
\]

Because of \(n \) small spheres for each phase, Eq. (12) should become:

\[
T_m = br \cos \theta - \Sigma n R_i^3 k_i \frac{k_i - k_m \cos \theta}{k_i + 2k_m} \quad \text{outside the sphere}.
\]

On the other hand, the material could be considered as a large sphere of radius \(R \) and thermal conductivity \(k_e \) contained within the uniform medium. The volume fraction \(v_i \) of phase \(i \) within the material is:

\[
v_i = \frac{n R_i^3}{R}.
\]

So, Eq. (12) is:

\[
T_m = br \cos \theta - \sum b RV_i R_i^3 k_i - k_m \frac{k_i - k_m \cos \theta}{k_i + 2k_m} \quad \text{outside the sphere}.
\]

Because the large sphere with thermal conductivity \(k_e \) is filled within the assumed uniform medium, Eq. (12) would become:

\[
T_m = br \cos \theta - \frac{\Sigma n V_i R_i^3 k_i - k_m \cos \theta}{k_i + 2k_m} \quad \text{outside the sphere}.
\]

Eq. (15) should be equal to Eq. (16), and hence we get:

\[
\sum V_i \frac{k_i - k_m}{k_i + 2k_m} = \frac{k_e - k_m}{k_e + 2k_m}.
\]
Because Σv_i is equal to 1, Eq. (17) should be changed to:

$$\Sigma v_i \left(\frac{k_i - k_m}{k_i + 2k_m} \right) = 0. \quad (18)$$

When rearranged, Eq. (18) becomes:

$$\frac{3k_m}{k_s + 2k_m} \Sigma v_i \left(\frac{k_i - k_m}{k_i + 2k_m} \right) = 0. \quad (19)$$

This model required that Eq. (19) must be zero, i.e.:

$$\Sigma v_i \left(\frac{k_i - k_m}{k_i + 2k_m} \right) = 0. \quad (20)$$

For a porous material, it can be considered as a two-phase system (solid and air), and Eq. (20) becomes

$$(1 - \varepsilon) \frac{k_s - k_m}{k_s + 2k_m} + \varepsilon \frac{k_a - k_m}{k_a + 2k_m} = 0 \quad (21)$$

where k and ε are thermal conductivity and porosity, and subscripts of e, a and s represent the two-phase material system, air and solid, respectively. When $k_m = k_e$, Eq. (21) is the EMT model. When $k_m = k_s$ and k_a, Eq. (21) is the Maxwell–Eucken 1 and 2, respectively. When $k_m = 0$ Eq. (21) is the Series model, and when $k_m = \infty$ Eq. (21) is the Parallel model. To sum up, the model can change to various forms with different values of k_m, including the Series and Parallel models, Maxwell–Eucken models and EMT model.

3. Results and discussion

In this work, the experimental data from previous literatures including three kinds of porous materials, such as dry sand ("external porosity" material) [12], cellular ceramics ("internal porosity" material) [13] and fibrous porous materials (non-spherical porous material) [14], are used to test the model. In Table 1, thermal conductivity experimental results from previous literatures with different porous materials are compared with Eqs. (21) estimations. For convenience, we assume that k_m is a constant, and the values of k_m for different porous materials are also shown. The comparison shows a remarkably good agreement for the whole porosity.

In fact, in Eq. (21) the value of k_m reflects the heat conduction between solid and air. When $k_m = k_e$, the material has a completely random distribution of solid and air, and the model is the EMT model itself. When $k_m = k_s$, the solid is continuous, the model becomes the Maxwell–Eucken 1. While $k_m = k_a$, the air is continuous, the model becomes the Maxwell–Eucken 2. When $k_m = 0$, the heat conduction between solid and air is impossible and this situation is identical to the Parallel model. In contrast, when $k_m = \infty$, all heat transfer through solid to air as a result of no heat block between them and this mechanism is same as the Series model.

4. Conclusions

In this work, a novel effective medium theory was presented for modelling the thermal conductivity of porous materials. In the present model, phases (or components) are treated as small spheres dispersing into an assumed uniform medium which has the thermal conductivity k_m. Based on heat transfer analysis, a simple expression of effective thermal conductivity was obtained without containing any empirical parameters. The model can unify five fundamental effective thermal conductivity structural models with different values of k_m. Compared with the experimental data in previous literatures, the effective thermal conductivity predicted by this model presents a good agreement.

Acknowledgements

This work was supported by the National Basic Research Program of China (973 Program) (Grant No.2012CB719700) and the Open Project Program of the State Key Lab of Fire (Grant No.HZ2011-KF10), University of Science and Technology of China.

References

Table 1

Comparison between thermal conductivity values calculated by this model and experimental values with different porous materials.

<table>
<thead>
<tr>
<th>Porous materials</th>
<th>ε (%)</th>
<th>k_i (W/mK)</th>
<th>k_a (W/mK)</th>
<th>Estimated (W/mK)</th>
<th>Experimental (W/mK)</th>
<th>k_m (W/mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry sand</td>
<td>19</td>
<td>9.0</td>
<td>0.026</td>
<td>0.69</td>
<td>0.63</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>0.37</td>
<td>0.36</td>
<td>0.31</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>0.14</td>
<td>0.18</td>
<td>0.19</td>
<td>0.18</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>59</td>
<td>0.15</td>
<td>0.15</td>
<td>0.18</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>Cellular ceramic</td>
<td>84</td>
<td>19.2</td>
<td>18.4</td>
<td>15.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>9.5</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>87</td>
<td>6.2</td>
<td>5.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibrous material</td>
<td>55.4</td>
<td>167</td>
<td>0.026</td>
<td>19.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>72.5</td>
<td>9.5</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80.4</td>
<td>6.2</td>
<td>5.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

